Answer:
16. Angle C is approximately 13.0 degrees.
17. The length of segment BC is approximately 45.0.
18. Angle B is approximately 26.0 degrees.
15. The length of segment DF "e" is approximately 12.9.
Step-by-step explanation:
<h3>16</h3>
By the law of sine, the sine of interior angles of a triangle are proportional to the length of the side opposite to that angle.
For triangle ABC:
,- The opposite side of angle A
, - The angle C is to be found, and
- The length of the side opposite to angle C
.
.
.
.
Note that the inverse sine function here
is also known as arcsin.
<h3>17</h3>
By the law of cosine,
,
where
,
, and
are the lengths of sides of triangle ABC, and
is the cosine of angle C.
For triangle ABC:
,
, - The length of
(segment BC) is to be found, and - The cosine of angle A is
.
Therefore, replace C in the equation with A, and the law of cosine will become:
.
.
<h3>18</h3>
For triangle ABC:
,
,
, and- Angle B is to be found.
Start by finding the cosine of angle B. Apply the law of cosine.
.
.
.
<h3>15</h3>
For triangle DEF:
- The length of segment DF is to be found,
- The length of segment EF is 9,
- The sine of angle E is
, and - The sine of angle D is
.
Apply the law of sine:

.
You have to do 225 plus 125 divided by 2 times 100 and that is your percent
Answer:
$179.94 for 5 pairs of jeans
Step-by-step explanation:
Answer:
Below
Step-by-step explanation:
First we combine your first set of terms,
7b^2 + 2b^2 = 9b^2
There's a subtraction hidden in there!
9b^2 - 3b^2 = 6b^2
Next we do the same thing for the second term,
3b + 7b = 10b
but there's a subtraction in the expression!
10b - b = 9b
Then we finish with our third term
6 + 5 = 11
Answer:
6b^2 + 9b + 11
Answer:
(14a+3, 21+4) = 1
Step-by-step explanation:
We are going to use the Euclidean Algorithm to prove that these two integers have a gcd of 1.
gcd (14a + 3, 21a + 4) = gcd (14a+3, 7a + 1) = gcd (1, 7a+1) = 1
Therefore,
(14a + 3, 21a + 4) = 1