Answer:
Only points on the circle satisfy the given inequality.
Step-by-step explanation:
Given: Unit circle
To find: portion of the unit circle which satisfies the trigonometric inequality ![\sin ^2\theta +\cos ^2\theta \geq 1](https://tex.z-dn.net/?f=%5Csin%20%5E2%5Ctheta%20%2B%5Ccos%20%5E2%5Ctheta%20%5Cgeq%201)
Solution:
In the given figure, OA = 1 unit (as radius of the unit circle equal to 1)
= side opposite to
/hypotenuse
= side adjacent to
/hypotenuse
![\sin \theta =\frac{AB}{AO}\\\sin \theta =\frac{AB}{1}\\AB=\sin \theta](https://tex.z-dn.net/?f=%5Csin%20%5Ctheta%20%3D%5Cfrac%7BAB%7D%7BAO%7D%5C%5C%5Csin%20%5Ctheta%20%3D%5Cfrac%7BAB%7D%7B1%7D%5C%5CAB%3D%5Csin%20%5Ctheta)
![\cos \theta=\frac{OB}{AO}\\\cos \theta =\frac{OB}{1}\\OB=\cos \theta](https://tex.z-dn.net/?f=%5Ccos%20%20%5Ctheta%3D%5Cfrac%7BOB%7D%7BAO%7D%5C%5C%5Ccos%20%5Ctheta%20%3D%5Cfrac%7BOB%7D%7B1%7D%5C%5COB%3D%5Ccos%20%5Ctheta)
So, coordinates of A = ![\left ( \cos \theta ,\sin \theta \right )](https://tex.z-dn.net/?f=%5Cleft%20%28%20%5Ccos%20%5Ctheta%20%2C%5Csin%20%5Ctheta%20%20%5Cright%20%29)
For any point (x,y) on the unit circle with centre at origin, equation of circle is given by ![x^2+y^2=1](https://tex.z-dn.net/?f=x%5E2%2By%5E2%3D1)
Put ![(x,y)=\left ( \cos \theta ,\sin \theta \right )](https://tex.z-dn.net/?f=%28x%2Cy%29%3D%5Cleft%20%28%20%5Ccos%20%5Ctheta%20%2C%5Csin%20%5Ctheta%20%20%5Cright%20%29)
![\cos ^2\theta +\sin ^2\theta =1](https://tex.z-dn.net/?f=%5Ccos%20%5E2%5Ctheta%20%2B%5Csin%20%5E2%5Ctheta%20%3D1)
So,
satisfies the equation ![x^2+y^2=1](https://tex.z-dn.net/?f=x%5E2%2By%5E2%3D1)
For points
inside the circle, ![\cos ^2\theta +\sin ^2\theta](https://tex.z-dn.net/?f=%5Ccos%20%5E2%5Ctheta%20%2B%5Csin%20%5E2%5Ctheta%20%3C1)
For points
outside the circle, ![\cos ^2\theta +\sin ^2\theta >1](https://tex.z-dn.net/?f=%5Ccos%20%5E2%5Ctheta%20%2B%5Csin%20%5E2%5Ctheta%20%3E1)
So, only points on the circle satisfy the given inequality.