Answer:
The dimensions are 6 by 5 feet.
Length = 6 feet.
Width = 5 feet.
Step-by-step explanation:
Let the length = L
Let the width = W
Perimeter of a rectangle = 2L + 2W
Translating the word problem into an algebraic equation, we have;
L = 2W - 4 ........equation 1
22 = 2L + 2W .......equation 2
Substituting the value of "L" into equation 2, we have;
22 = 2(2W - 4) + 2W
22 = 4W - 8 + 2W
22 + 8 = 6W
30 = 6W
W = 30/6
Width, W = 5 feet.
To find the length, L
Substituting the value of "W" into equation 1, we have;
L = 2W - 4
L = 2(5) - 4
L = 10-4
Length, L =6 feet
Therefore, the dimensions of the garden are 6 by 5 feet.
Answer:
9 tables
Step-by-step explanation:
All we have to do is see how many time 6³/₄ ft. can fit in 60³/₄ ft. through division.
60 ³/₄ ÷ 6 ³/₄ =
²⁴³/₄ ÷ ²⁷/₄ =
²⁴³/₄ × ⁴/₂₇ =
²⁴³/₂₇ =
9 tables
<h3>
Answer: Choice C) </h3><h3>
The system can only be independent and consistent</h3>
===========================================================
Explanation:
Let's go through the answer choices
- A) This isn't possible. Either a system is consistent or inconsistent. It cannot be both at the same time. The term "inconsistent" literally means "not consistent". It's like saying a cup is empty and full at the same time. We can rule out choice A.
- B) This is similar to choice A and we cannot have a system be both independent and dependent. Either a system is independent or dependent, but not both. Independence means that the two equations are not tied together, while dependent equations are some multiple of each other. We can rule out choice B.
- C) We'll get back to this later
- D) The independence/dependence status is unknown without the actual equations present. However, we know 100% that this system is not inconsistent. This is because the system has at least one solution. Inconsistent systems do not have any solutions at all (eg: parallel lines that never cross). We can rule out choice D because of this.
Going back to choice C, again we don't have enough info to determine if the system is independent or dependent, but we at least know it's consistent. Consistent systems have one or more solutions. So part of choice C can be confirmed. It being the only thing left means that it has to be the final answer.
If it were me as the teacher, I'd cross out the "independent" part of choice C and simply say the system is consistent.
Answer:
1. The volume of the pile is 4,399.7719 m^3
2. The number of sanders to be filled from a pile is 638
Step-by-step explanation:
Here, we firstly would calculate the volume of the pile
Mathematically, that will be;
V = 1/3 * pi * r^2 * h
from the question, h = 14.2
Mathematically, r = d/2
r = 34.4/2 = 17.2 m
So the volume will be:
V = 1/3 * 3.142 * 17.2^2 * 14.2
V = 4,399.7719 m^3
To find the number of sanders to be filled,
we simply divide the volume obtained by the volume a sander can take
That will be;
4,399.7719/6.9
= 637.6 which is 638
Answer:
you plot the coordinates you have been given
Step-by-step explanation: