Answer:
a) 0.5768 = 57.68% probability that the shop sells at least 3 in a week.
b) 0.988 = 98.8% probability that the shop sells at most 7 in a week.
c) 0.0104 = 1.04% probability that the shop sells more than 20 in a month.
Step-by-step explanation:
For questions a and b, the Poisson distribution is used, while for question c, the normal approximation is used.
Poisson distribution:
In a Poisson distribution, the probability that X represents the number of successes of a random variable is given by the following formula:
In which
x is the number of successes
e = 2.71828 is the Euler number
is the mean in the given interval.
Normal Probability Distribution
Problems of normal distributions can be solved using the z-score formula.
In a set with mean
and standard deviation
, the z-score of a measure X is given by:
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
The Poisson distribution can be approximated to the normal with
, if
.
Poisson variable with the mean 3
This means that
.
(a) At least 3 in a week.
This is
. So
![P(X \geq 3) = 1 - P(X < 3)](https://tex.z-dn.net/?f=P%28X%20%5Cgeq%203%29%20%3D%201%20-%20P%28X%20%3C%203%29)
In which:
![P(X < 3) = P(X = 0) + P(X = 1) + P(X = 2)](https://tex.z-dn.net/?f=P%28X%20%3C%203%29%20%3D%20P%28X%20%3D%200%29%20%2B%20P%28X%20%3D%201%29%20%2B%20P%28X%20%3D%202%29)
Then
![P(X = x) = \frac{e^{-\lambda}*\lambda^{x}}{(x)!}](https://tex.z-dn.net/?f=P%28X%20%3D%20x%29%20%3D%20%5Cfrac%7Be%5E%7B-%5Clambda%7D%2A%5Clambda%5E%7Bx%7D%7D%7B%28x%29%21%7D)
![P(X = 0) = \frac{e^{-3}*3^{0}}{(0)!} = 0.0498](https://tex.z-dn.net/?f=P%28X%20%3D%200%29%20%3D%20%5Cfrac%7Be%5E%7B-3%7D%2A3%5E%7B0%7D%7D%7B%280%29%21%7D%20%3D%200.0498)
![P(X = 1) = \frac{e^{-3}*3^{1}}{(1)!} = 0.1494](https://tex.z-dn.net/?f=P%28X%20%3D%201%29%20%3D%20%5Cfrac%7Be%5E%7B-3%7D%2A3%5E%7B1%7D%7D%7B%281%29%21%7D%20%3D%200.1494)
![P(X = 2) = \frac{e^{-3}*3^{2}}{(2)!} = 0.2240](https://tex.z-dn.net/?f=P%28X%20%3D%202%29%20%3D%20%5Cfrac%7Be%5E%7B-3%7D%2A3%5E%7B2%7D%7D%7B%282%29%21%7D%20%3D%200.2240)
So
![P(X < 3) = P(X = 0) + P(X = 1) + P(X = 2) = 0.0498 + 0.1494 + 0.2240 = 0.4232](https://tex.z-dn.net/?f=P%28X%20%3C%203%29%20%3D%20P%28X%20%3D%200%29%20%2B%20P%28X%20%3D%201%29%20%2B%20P%28X%20%3D%202%29%20%3D%200.0498%20%2B%200.1494%20%2B%200.2240%20%3D%200.4232)
![P(X < 3) = P(X = 0) + P(X = 1) + P(X = 2) = 1 - 0.4232 = 0.5768](https://tex.z-dn.net/?f=P%28X%20%3C%203%29%20%3D%20P%28X%20%3D%200%29%20%2B%20P%28X%20%3D%201%29%20%2B%20P%28X%20%3D%202%29%20%3D%201%20-%200.4232%20%3D%200.5768)
0.5768 = 57.68% probability that the shop sells at least 3 in a week.
(b) At most 7 in a week.
This is:
![P(X \leq 7) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) + P(X = 4) + P(X = 5) + P(X = 6) + P(X = 7)](https://tex.z-dn.net/?f=P%28X%20%5Cleq%207%29%20%3D%20P%28X%20%3D%200%29%20%2B%20P%28X%20%3D%201%29%20%2B%20P%28X%20%3D%202%29%20%2B%20P%28X%20%3D%203%29%20%2B%20P%28X%20%3D%204%29%20%2B%20P%28X%20%3D%205%29%20%2B%20P%28X%20%3D%206%29%20%2B%20P%28X%20%3D%207%29)
In which
![P(X = x) = \frac{e^{-\lambda}*\lambda^{x}}{(x)!}](https://tex.z-dn.net/?f=P%28X%20%3D%20x%29%20%3D%20%5Cfrac%7Be%5E%7B-%5Clambda%7D%2A%5Clambda%5E%7Bx%7D%7D%7B%28x%29%21%7D)
![P(X = 0) = \frac{e^{-3}*3^{0}}{(0)!} = 0.0498](https://tex.z-dn.net/?f=P%28X%20%3D%200%29%20%3D%20%5Cfrac%7Be%5E%7B-3%7D%2A3%5E%7B0%7D%7D%7B%280%29%21%7D%20%3D%200.0498)
![P(X = 1) = \frac{e^{-3}*3^{1}}{(1)!} = 0.1494](https://tex.z-dn.net/?f=P%28X%20%3D%201%29%20%3D%20%5Cfrac%7Be%5E%7B-3%7D%2A3%5E%7B1%7D%7D%7B%281%29%21%7D%20%3D%200.1494)
![P(X = 2) = \frac{e^{-3}*3^{2}}{(2)!} = 0.2240](https://tex.z-dn.net/?f=P%28X%20%3D%202%29%20%3D%20%5Cfrac%7Be%5E%7B-3%7D%2A3%5E%7B2%7D%7D%7B%282%29%21%7D%20%3D%200.2240)
![P(X = 3) = \frac{e^{-3}*3^{3}}{(3)!} = 0.2240](https://tex.z-dn.net/?f=P%28X%20%3D%203%29%20%3D%20%5Cfrac%7Be%5E%7B-3%7D%2A3%5E%7B3%7D%7D%7B%283%29%21%7D%20%3D%200.2240)
![P(X = 4) = \frac{e^{-3}*3^{4}}{(4)!} = 0.1680](https://tex.z-dn.net/?f=P%28X%20%3D%204%29%20%3D%20%5Cfrac%7Be%5E%7B-3%7D%2A3%5E%7B4%7D%7D%7B%284%29%21%7D%20%3D%200.1680)
![P(X = 5) = \frac{e^{-3}*3^{5}}{(5)!} = 0.1008](https://tex.z-dn.net/?f=P%28X%20%3D%205%29%20%3D%20%5Cfrac%7Be%5E%7B-3%7D%2A3%5E%7B5%7D%7D%7B%285%29%21%7D%20%3D%200.1008)
![P(X = 6) = \frac{e^{-3}*3^{6}}{(6)!} = 0.0504](https://tex.z-dn.net/?f=P%28X%20%3D%206%29%20%3D%20%5Cfrac%7Be%5E%7B-3%7D%2A3%5E%7B6%7D%7D%7B%286%29%21%7D%20%3D%200.0504)
![P(X = 7) = \frac{e^{-3}*3^{7}}{(7)!} = 0.0216](https://tex.z-dn.net/?f=P%28X%20%3D%207%29%20%3D%20%5Cfrac%7Be%5E%7B-3%7D%2A3%5E%7B7%7D%7D%7B%287%29%21%7D%20%3D%200.0216)
Then
![P(X \leq 7) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) + P(X = 4) + P(X = 5) + P(X = 6) + P(X = 7) = 0.0498 + 0.1494 + 0.2240 + 0.2240 + 0.1680 + 0.1008 + 0.0504 + 0.0216 = 0.988](https://tex.z-dn.net/?f=P%28X%20%5Cleq%207%29%20%3D%20P%28X%20%3D%200%29%20%2B%20P%28X%20%3D%201%29%20%2B%20P%28X%20%3D%202%29%20%2B%20P%28X%20%3D%203%29%20%2B%20P%28X%20%3D%204%29%20%2B%20P%28X%20%3D%205%29%20%2B%20P%28X%20%3D%206%29%20%2B%20P%28X%20%3D%207%29%20%3D%200.0498%20%2B%200.1494%20%2B%200.2240%20%2B%200.2240%20%2B%200.1680%20%2B%200.1008%20%2B%200.0504%20%2B%200.0216%20%3D%200.988)
0.988 = 98.8% probability that the shop sells at most 7 in a week.
(c) More than 20 in a month (4 weeks).
4 weeks, so:
![\mu = \lambda = 4(3) = 12](https://tex.z-dn.net/?f=%5Cmu%20%3D%20%5Clambda%20%3D%204%283%29%20%3D%2012)
![\sigma = \sqrt{\lambda} = \sqrt{12}](https://tex.z-dn.net/?f=%5Csigma%20%3D%20%5Csqrt%7B%5Clambda%7D%20%3D%20%5Csqrt%7B12%7D)
The probability, using continuity correction, is P(X > 20 + 0.5) = P(X > 20.5), which is 1 subtracted by the p-value of Z when X = 20.5.
![Z = \frac{X - \mu}{\sigma}](https://tex.z-dn.net/?f=Z%20%3D%20%5Cfrac%7BX%20-%20%5Cmu%7D%7B%5Csigma%7D)
![Z = \frac{20 - 12}{\sqrt{12}}](https://tex.z-dn.net/?f=Z%20%3D%20%5Cfrac%7B20%20-%2012%7D%7B%5Csqrt%7B12%7D%7D)
![Z = 2.31](https://tex.z-dn.net/?f=Z%20%3D%202.31)
has a p-value of 0.9896.
1 - 0.9896 = 0.0104
0.0104 = 1.04% probability that the shop sells more than 20 in a month.