Mitochondria and chloroplast have similar DNA, which is not evidence for the endosymbiotic origins of mitochondria and chloroplasts.
According to the endosymbiotic theory, a chloroplast and a mitochondria were the independent prokaryotes. Both can be ingested by a large prokaryote and resist digestion. As a result, they continued as endosymbionts and eventually lost some of their autonomic properties. They divide by binary fission, have their own genetic material, possess 70s ribosomes, and Both include their own transcriptional and translational machinery.
Therefore, considering endosymbiotic origin theory, Both Mitochondria and chloroplast have similar DNA is not a piece of evidence.
Learn more about endosymbiotic origins theory here
brainly.com/question/771962
#SPJ4
Answer:
The respitory system and the nervous system.
Explanation:
I'm pretty sure
Binary fission is a type of asexual reproduction. This is when the cell divides into halves. So 1 cell would end up as 2 smaller cells.
Answer:C
Explanation:
It is important for the cell not to activate glycolysis and gluconeogenesis at high rate simultaneously because it is expensive for the cell.
In the break down of one molecule of glucose to pyruvate, one ATP is used in the conversion of glucose to glucose-6-phosphate and one ATP is used in the conversion of fructose-1-phoshate to fructose-1,6-biphosohate. While a total of four ATPs are produced.
Making it a net gain of 2 ATP in glycolysis.
Gluconeogenesis produces no ATP and requires equivalents of 6 ATP (4 ATP and 2GTP) for one molecule of glucose produced.
(Glycolysis +2ATP) + (gluconeogenesis -6ATP) = -4ATP
There's a net loss of 4ATP if both reactions are activated simultaneously.