8.71428571429 is the answer
Answer:


Since the calculated values is lower than the critical value we have enough evidence to reject the null hypothesis at the significance level of 2.5% and we can say that the true mean is lower than 36 years old
Step-by-step explanation:
Data given
represent the sample mean
represent the sample standard deviation
sample size
represent the value that we want to test
represent the significance level for the hypothesis test.
t would represent the statistic (variable of interest)
represent the p value for the test (variable of interest)
System of hypothesis
We need to conduct a hypothesis in order to check if the true mean is less than 36 years old, the system of hypothesis would be:
Null hypothesis:
Alternative hypothesis:
The statistic is given by:
(1)
And replacing we got:
Now we can calculate the critical value but first we need to find the degreed of freedom:

So we need to find a critical value in the t distribution with df =21 who accumulates 0.025 of the area in the left and we got:

Since the calculated values is lower than the critical value we have enough evidence to reject the null hypothesis at the significance level of 2.5% and we can say that the true mean is lower than 36 years old
Yes that’s completely true because of course you can’t say it is false
you would end up paying $4,750
but the answer is A) $5000
mark brainliest please it would help alot
:)
Answer:

Step-by-step explanation:
The opposite angles in a quadrilateral theorem states that when a quadrilateral is inscribed in a circle, the angles that are opposite each other are supplementary, their degree measures add up to 180 degrees. One can apply this here by using the sum of (<C) and (<A) to find the measure of the parameter (z). Then one can substitute in the value of (z) to find the measure of (<B). Finally, one can use the opposite angles in a quadrilateral theorem to find the measure of angle (<D) by using the sum of (<B) and (D).
Use the opposite angles in an inscribed quadrialteral theorem,
<A + <C = 180
Substitute,
14x - 7 + 8z = 180
Simplify,
22z - 7 = 180
Inverse operations,
22z = 187
z = 
Simplify,
z = 
Now substitute the value of (z) into the expression given for the measure of angle (<B)
<B = 10z
<B = 10(
)
Simplify,
<B = 85
Use the opposite angles in an inscribed quadrilateral theorem to find the measure of (<D)
<B + <D = 180
Substitute,
85 + <D = 180
Inverse operations,
<D = 95