<span>area =
</span><span />
<span>Therefore,
</span>
<span /><span>
</span>
<span /><span>Width = 4cm
</span>
De acordo com a disponibilidade da unidade, há apenas a seguinte dosagem: 1g/2mL - ou seja, uma grama de dipirona a cada 2mL
O enunciado está meio mal formulado, pois é dito que foram prescritos 500mg de dipirona e é essa quantidade de farmaco que a criança tem que tomar. Deseja-se saber quantos mL deverao ser administrados.
Fazendo a classica regra de 3, podemos chegar no volume desejado:
(atentar que 500mg = 0,5g)
g mL
1 --------- 2
0,5 --------- X
1 . X = 0,5 . 2
<h3>X = 1mL</h3>
Answer:
2x^2
Step-by-step explanation:
combine like terms, and do the subtraction!
<u>Annotation</u>General formula for distance-time-velocity relationship is as following
d = v × t
The velocity of the first car will be v₁, the time is 2 hours, the distance will be d₁.
The velocity of the second car will be v₂, the time is 2 hours, the distance will be d₂.
One of them traveling 5 miles per hour faster than the others. That means the velocity of the first car is 5 miles per hour more than the velocity of the second car.
v₁ = v₂ + 5 (first equation)
The distance of the two cars after two hours will be 262 miles apart. Because they go to opposite direction, we could write it as below.
d₁ + d₂ = 262 (second equation)
Plug the d-v-t relationship to the second equationd₁ + d₂ = 262
v₁ × t + v₂ × t = 262
v₁ × 2 + v₂ × 2 = 262
2v₁ + 2v₂ = 262
Plug the v₁ as (v₂+5) from the first equation2v₁ + 2v₂ = 262
2(v₂ + 5) + 2v₂ = 262
2v₂ + 10 + 2v₂ = 262
4v₂ + 10 = 262
4v₂ = 252
v₂ = 252/4
v₂ = 63
The second car is 63 mph fast.Find the velocity of the first car, use the first equationv₁ = v₂ + 5
v₁ = 63 + 5
v₁ = 68
The first car is 68 mph fast.
Answer


Answer:
E (Y) = 3
Step-by-step explanation:
If a 4-sided die is being rolled repeatedly; and the odd-numbered rolls (1st 3rd,5th, etc.)
The probability of odd number roll will be, p(T) = 
However, on your even-numbered rolls, you are victorious if you get a 3 or 4. Also, the probability of even number roll, p(U) = 
In order to calculate: E (Y); We can say Y to be the number of times you roll.
We know that;
E (Y) = E ( Y|T ) p(T) + E ( Y|U ) p(U)
Let us calculate E ( Y|T ) and E ( Y|U )
Y|T ≅ geometric = 
Y|U ≅ geometric = 
also; x ≅ geometric (p)
∴ E (x) =
⇒
= 4 ; also
= 2
E (Y) = 4 ×
+ 2 ×
= 2+1
E (Y) = 3