Here is our profit as a function of # of posters
p(x) =-10x² + 200x - 250
Here is our price per poster, as a function of the # of posters:
pr(x) = 20 - x
Since we want to find the optimum price and # of posters, let's plug our price function into our profit function, to find the optimum x, and then use that to find the optimum price:
p(x) = -10 (20-x)² + 200 (20 - x) - 250
p(x) = -10 (400 -40x + x²) + 4000 - 200x - 250
Take a look at our profit function. It is a normal trinomial square, with a negative sign on the squared term. This means the curve is a downward facing parabola, so our profit maximum will be the top of the curve.
By taking the derivative, we can find where p'(x) = 0 (where the slope of p(x) equals 0), to see where the top of profit function is.
p(x) = -4000 +400x -10x² + 4000 -200x -250
p'(x) = 400 - 20x -200
0 = 200 - 20x
20x = 200
x = 10
p'(x) = 0 at x=10. This is the peak of our profit function. To find the price per poster, plug x=10 into our price function:
price = 20 - x
price = 10
Now plug x=10 into our original profit function in order to find our maximum profit:
<span>p(x)= -10x^2 +200x -250
p(x) = -10 (10)</span>² +200 (10) - 250
<span>p(x) = -1000 + 2000 - 250
p(x) = 750
Correct answer is C)</span>
Answer:
yes because every time x changes y changes the same amount
Step-by-step explanation:
Answer:
928
Step-by-step explanation:
Answer:
Part 1) The domain of the quadratic function is the interval (-∞,∞)
Part 2) The range is the interval (-∞,1]
Step-by-step explanation:
we have

This is a quadratic equation (vertical parabola) open downward (the leading coefficient is negative)
step 1
Find the domain
The domain of a function is the set of all possible values of x
The domain of the quadratic function is the interval
(-∞,∞)
All real numbers
step 2
Find the range
The range of a function is the complete set of all possible resulting values of y, after we have substituted the domain.
we have a vertical parabola open downward
The vertex is a maximum
Let
(h,k) the vertex of the parabola
so
The range is the interval
(-∞,k]
Find the vertex

Factor -1 the leading coefficient

Complete the square


Rewrite as perfect squares

The vertex is the point (7,1)
therefore
The range is the interval
(-∞,1]
I used 3.14 for pi to solve easier.
6. 6.28
7. 21.98
8. 94.2