Answer:
5.) The possible genotypes should be: RR RB BB ( if the could for the same proteins)
6.) Frequency of R: 0.5
7.)Frequency of R: 0.5
8.)Frequency of R: 0.375
Explanation:
5.) If R and B code for the different forms of the same protein then they are only a few possible out comes
6.) First calculate the total alleles in population
allele R= 40
Allele B=40
total allele = R+B= 40+40
=80
Now to find allele R frequency is:
(Total R alleles) / (Total allele in pop)
40/80=
0.5
7.)Calculate the total alleles
Alleles from for R
RR= 10
R=10x 2= 20
Multiply the value by 2 because there are 2 R alleles present in
RB=20
R=20
Number doesn't change there is only 1 R allele
Total R=20+20
=40
Alleles For B
BB=10
B=10×2
=20
Same thing here, two B alleles together so multiple by 2
RB=20
B=20
Total B= 20+20
=40
Total alleles in pop add
40+40
=80
Frequency of R
Total of R/Total Alleles
=40/80
=0.5
8.)Repeat the same thing in 7 but use different numbers
RR=10
R=10x2
=20
RB=10
R=10
Total R= 20+10
=30
Answer:
Glycolysis produces 4 ATP molecules, giving it a net gain of 2 ATP molecules. The four high energy electrons that are removed by glycolysis are picked by an electron carrier called NAD. NAD becomes NADH.As it spins it grabs an ADP molecule and attaches a phosphate, forming high energy ATP.
Explanation:
Both NADPH and ATP are phosphorylated compounds, both are very important catabolic as well as anabolic processes. To explain the difference, their respective functions/roles in biochemical processes should be described along with relevant chemical properties.
ATP (Adenosine triphospahte) is called an energy rich molecule because of the large negative free energy of its hydrolysis (And has nothing to do with high bond energy).
30.5 kilo Joules or 7.3 kilo calorie energy is liberated after hydrolysis of one ATP molecule to form ADP (Adenosine diphosphate) and phosphate.The reaction is almost irreversible
<span>The nurse begins intermittent oral feedings for a small-for-gestational-age newborn to prevent Hypoglycemia.</span>