Answer:
Width = 11 yards
Length = 17 yards
Step-by-step explanation:
First of all, the length of the rectangle is 6 yards longer than the width, this means, length = width + 6 yards. This dimensions can be represented on figure 1, where <em>w</em> is width, and <em>l</em>, for length.
We know the area of a rectangle is A = width x length
For our case 187 = w . (w + 6)
Using the Distributive Property for the multiplication we obtain


Using the quadratic formula
where a = 1, b = 6, c = - 187 and replacing into the formula, we will have:


We have two options: 
Or
But a distance (width) can not be negative so, this answer for w must be discarded.
The answer must be width = 11 yards.
To find the length 
Answer:
Presumably you're solving for x here? Without further information we'll assume that.
With that in mind, x is approximately equal to 0.86 and -0.46
Step-by-step explanation:
Let's start by putting it in the usual ax² + bx + c format.

let's solve it. First we'll multiply both sides by five, making the first term a perfect square:

Now we'll add 11 to both sides:

Which makes the left side a perfect square:

And now we can solve for x:

Note that there's no apparent way of drawing the ± symbol when editing equations, so take that + sign as actually being ±.
That gives us two answers:

Answer:
7 square units
Step-by-step explanation:
As with many geometry problems, there are several ways you can work this.
Label the lower left and lower right vertices of the rectangle points W and E, respectively. You can subtract the areas of triangles WSR and EQR from the area of trapezoid WSQE to find the area of triangle QRS.
The applicable formulas are ...
area of a trapezoid: A = (1/2)(b1 +b2)h
area of a triangle: A = (1/2)bh
So, our areas are ...
AQRS = AWSQE - AWSR - AEQR
= (1/2)(WS +EQ)WE -(1/2)(WS)(WR) -(1/2)(EQ)(ER)
Factoring out 1/2, we have ...
= (1/2)((2+5)·4 -2·2 -5·2)
= (1/2)(28 -4 -10) = 7 . . . . square units
All you have to do is plug in the given values into the given equation and evaluate.
The expression is,

But we have to analyze the problem carefully. This is a natural phenomenon that can be modelled by a decay function. The reason is that, after every hour we expect the medicine in the blood to keep reducing.
Therefore we use the decay function rather. This is given by,

where,


and

On substitution, we obtain;


Now, we take our calculators and look for the constant

,then type e raised to exponent of -1.4. If you are using a scientific or programmable calculator you will find this constant as a secondary function. Remember it is the base of the Natural logarithm.
If everything goes well, you should obtain;

This implies that,

Therefore after 10 hours 24.66 mg of the medicine will still remain in the system.