Answer:
(N-1) × (L/2R) = (N-1)/2
Explanation:
let L is length of packet
R is rate
N is number of packets
then
first packet arrived with 0 delay
Second packet arrived at = L/R
Third packet arrived at = 2L/R
Nth packet arrived at = (n-1)L/R
Total queuing delay = L/R + 2L/R + ... + (n - 1)L/R = L(n - 1)/2R
Now
L / R = (1000) / (10^6 ) s = 1 ms
L/2R = 0.5 ms
average queuing delay for N packets = (N-1) * (L/2R) = (N-1)/2
the average queuing delay of a packet = 0 ( put N=1)
Answer:
Chemical engineering is the branch of engineering that deals with chemical production and the manufacture of products through chemical processes
Explanation:
Answer:
The problem is that the pumps would consume more energy than the generators would produce.
Explanation:
Water has a potential energy associated with the height it is at. The higher it is, the higher the potential energy. When water flows down into the turbines that energy is converted to kinetic energy and then into electricity.
A pump uses electricity to add energy to the water to send it to a higher potential energy state.
Ideally no net energy woul be hgenerate or lost, because the generators would release the potential energy and pumps would store it again in the water. However the systems are not ideal, everything has an efficiency and losses. The losses would accumulate and the generator would be generating less energy than the pumps consume, so that system wastes energy.
What should be done is closing the floodgates to keep the water up in the dam at night producing only the power that is needed and releasing more water during the day.