1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Rom4ik [11]
3 years ago
13

While discussing the diagnosis of an EI system in which the crankshaft and camshaft sensor tests are satisfactory but a spark te

ster connected from the spark plug wires to ground does not fire, Technician A says the coil assembly may be defective. Technician B says the voltage supply wire to the coil assembly maybe open. Who is correct?
Engineering
1 answer:
Lubov Fominskaja [6]3 years ago
5 0

Answer:

Both A and B  are correct.

Explanation:

The crankshaft sensor is attached to the crankshaft pulley on the

back side of the crankshaft. It is used to pass a signal to the PCM

which controls the ignition of an engine. This sensor helps in providing some basic timing for the signal. If there is a faulty sensor present, the signal will not be received by the PCM. So, it will affect the engine while starting. One reason can be a defective

assembly of the coil.

If there is a faulty \mathrm{PCM}, the signal will not be received properly. This will not allow the passing of signals to the ignition system. This will cause a misfire. One of the most common causes of

misfire is a faulty ignition coil. This will affect the working of a

sensor. So, prevent engine from starting.

You might be interested in
In normal operation, a paper mill generates excess steam at 20 bar and 400◦C. It is planned to use this steam as the feed to a t
Keith_Richards [23]

Answer:

The maximum power that can be generated is 127.788 kW

Explanation:

Using the steam table

Enthalpy at 20 bar = 2799 kJ/kg

Enthalpy at 2 bar = 2707 kJ/kg

Change in enthalpy = 2799 - 2707 = 92 kJ/kg

Mass flow rate of steam = 5000 kg/hr = 5000 kJ/hr × 1 hr/3600 s = 1.389 kg/s

Maximum power generated = change in enthalpy × mass flow rate = 92 kJ/kg × 1.389 kg/s = 127.788 kJ/s = 127.788 kW

6 0
3 years ago
Steam enters an adiabatic condenser (heat exchanger) at a mass flow rate of 5.55 kg/s where it condensed to saturated liquid wat
Evgen [1.6K]

Answer:

The minimum mass flow rate will be "330 kg/s".

Explanation:

Given:

For steam,

m_{s}=5.55 \ kg/s

\Delta h=2491 \ kg/kj

For water,

\Delta T=10^{\circ}C

(Cp)_{w}=4.184 \ kJ/kg^{\circ}C

They add energy efficiency as condenser becomes adiabatic, with total mass flow rate of minimal vapor,

⇒  m_{s}\times (\Delta h)=M_{w}\times(Cp)_{w}\times \Delta T

On putting the estimated values, we get

⇒  5.55\times 2491=M_{w}\times 4.184\times 10\\

⇒  13825.05=M_{w}\times 41.84

⇒  M_{w}=330 \ kg/s

7 0
3 years ago
The purification of hydrogen gas is possible by diffusion through a thin palladium sheet. Calculate the number of kilograms of h
gtnhenbr [62]

Answer: 5.36×10-3kg/h

Where 10-3 is 10 exponential 3 or 10 raised to the power of -3.

Explanation:using the formula

M =JAt = -DAt×Dc/Dx

Where D is change in the respective variables. Insulting the values we get,

=5.1 × 10-8 × 0.13 × 3600 × 2.9 × 0.31 / 4×10-3.

=5.36×10-3kg/h

6 0
3 years ago
Write a program that uses a function called Output_Array_Info. Output_Array_Info Properties: Input Parameters: 1. A pointer to a
Artyom0805 [142]

Answer:

C++ code explained below

Explanation:

Please note the below program has been tested on ubuntu 16.04 system and compiled using g++ compiler. This code will also work on other IDE's

-----------------------------------------------------------------------------------------------------------------------------------

Program:

-----------------------------------------------------------------------------------------------------------------------------------

//header files

#include<iostream>

//namespace

using namespace std;

//function defintion

void Output_Array_Info(int *array_ptr, int size)

{

//display all array elements

cout<<"Array elements are: "<<endl;

for(int i =0; i<size; i++)

{

cout<<*(array_ptr+i)<<endl;

}

//display address of each element

cout<<endl<<"memory address of each array elemnt is: "<<endl;

for(int i =0; i<size; i++)

{

cout<<array_ptr+i<<endl;

}

}

//start of main function

int main()

{

//pointer variables

int *pointer;

//an array

int numbers[] = { 5, 7, 9, 10, 12};

//pointer pointing to array

pointer = numbers;

//calculate the size of the array

int size = sizeof(numbers)/sizeof(int);

//call to function

Output_Array_Info(numbers, size);

return 0;

}

//end of the main program

8 0
3 years ago
P10.12. A certain amplifier has an open-circuit voltage gain of unity, an input resistance of and an output resistance of The si
klio [65]

complete question

A certain amplifier has an open-circuit voltage gain of unity, an input resistance of 1 \mathrm{M} \Omega1MΩ and an output resistance of 100 \Omega100Ω The signal source has an internal voltage of 5 V rms and an internal resistance of 100 \mathrm{k} \Omega.100kΩ. The load resistance is 50 \Omega.50Ω. If the signal source is connected to the amplifier input terminals and the load is connected to the output terminals, find the voltage across the load and the power delivered to the load. Next, consider connecting the load directly across the signal source without the amplifier, and again find the load voltage and power. Compare the results. What do you conclude about the usefulness of a unity-gain amplifier in delivering signal power to a load?

Answer:

3.03 V  0.184 W

2.499 mV  125*10^-9 W

Explanation:

First, apply voltage-divider principle to the input circuit: 1

V_{i}= (R_i/R_i+R_s) *V_s = 10^6/10^6+(0.1*10^6)\\*5

    = 4.545 V

The voltage produced by the voltage-controlled source is:

A_voc*V_i = 4.545 V

We can find voltage across the load, again by using voltage-divider principle:  

V_o = A_voc*V_i*(R_o/R_l+R_o)

      = 4.545*(100/100+50)

      = 3.03 V  

Now we can determine delivered power:  

P_L = V_o^2/R_L

      = 0.184 W

Apply voltage-divider principle to the circuit:  

V_o = (R_o/R_o+R_s)*V_s

       = 50/50+100*10^3*5

       = 2.499 mV

Now we can determine delivered power:  

P_l = V_o^2/R_l

     = 125*10^-9 W

Delivered power to the load is significantly higher in case when we used amplifier, so a unity gain amplifier can be useful in situation when we want to deliver more power to the load. It is the same case with the voltage, no matter that we used amplifier with voltage open-circuit gain of unity.  

4 0
3 years ago
Other questions:
  • Let suppose, you are going to develop a web-application for school management system. Then what architectural pattern will you u
    9·1 answer
  • A 1000 KVA three phase transformer has a secondary voltage of 208/120. What is the secondary full load amperage?
    9·1 answer
  • Let CFG G be the following grammar.
    7·2 answers
  • How do you make a 3d print
    6·1 answer
  • What are the benefits of using a multi view sketch to communicate a design
    14·1 answer
  • PLEASE HELP!!!!!!!!!!!!!!!!!!!!! I AM BEING TIMED!!!!!!!!!!!!!!!!!!!!!! 30 MINUTES LEFT!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
    7·2 answers
  • How is the air delivery temperature controlled during A/C operation?
    8·1 answer
  • Compared with space operations specialists, intelligence officers are which of the following?
    7·1 answer
  • A restaurant and dairy are participating in a community digester pilot program within the UMD Industrial Park. The following was
    9·1 answer
  • Plz help If an item is $13.00 for a case of 24, then it is $
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!