1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
zepelin [54]
3 years ago
6

What are wheel cylinders used for?

Engineering
1 answer:
8090 [49]3 years ago
4 0

Answer:

A hydraulic brake system

Explanation:

A wheel cylinder is a component of a hydraulic brake system. It is located in each wheel and is usually positioned at the top of the wheel, above the shoes. Its function is to exert force onto the shoes so as to bring them into contact with the drum and stop the vehicle with friction.

You might be interested in
Select four examples of fluid or pneumatic power systems.
Dennis_Churaev [7]

Answer:

Students learn about the fundamental concepts important to fluid power, which includes both pneumatic (gas) and hydraulic (liquid) systems. Both systems contain four basic components: reservoir/receiver, pump/compressor, valve, cylinder.

Explanation:

8 0
3 years ago
Read 2 more answers
A heat pump operates on a vapor-compression refrigeration cycle with R-134a as the working fluid. The refrigerant enters the com
Rudiy27

Answer:

Hello your question has some missing information below are the missing information

The refrigerant enters the compressor as saturated vapor at 140kPa Determine The coefficient of performance of this heat pump

answer : 2.49

Explanation:

For  vapor-compression refrigeration cycle

P1 = P4  ; P1 = 140 kPa

P2( pressure at inlet ) = P3 ( pressure at outlet ) ; P2 = 800 kPa

<u>From pressure table of R 134a refrigerant</u>

h1 ( enthalpy of saturated vapor at 140kPa ) = 239.16 kJ/kg

h2 ( enthalpy of saturated liquid at P2 = 800 kPa and t = 60°C )

= 296.8kJ/kg

h3 ( enthalpy of saturated liquid at P3 = 800 kPa ) = 95.47 kJ/kg

also h4 = 95.47 kJ/kg

To determine the coefficient of performance  

Cop = ( h1 - h4 ) / ( h2 - h1 )

∴ Cop = 2.49

3 0
3 years ago
Using a forked rod, a 0.5-kg smooth peg P is forced to move along the vertical slotted path r = (0.5 θ) m, whereθ is in radians.
-BARSIC- [3]

Answer:

N_c = 3.03 N

F = 1.81 N

Explanation:

Given:

- The attachment missing from the question is given:

- The given expressions for the radial and θ direction of motion:

                                       r = 0.5*θ

                                       θ = 0.5*t^2              ...... (correction for the question)

- Mass of peg m = 0.5 kg

Find:

a) Determine the magnitude of the force of the rod on the peg at the instant t = 2 s.

b) Determine the magnitude of the normal force of the slot on the peg.

Solution:

- Determine the expressions for radial kinematics:

                                        dr/dt = 0.5*dθ/dt

                                        d^2r/dt^2 = 0.5*d^2θ/dt^2

- Similarly the expressions for θ direction kinematics:

                                        dθ/dt = t

                                        d^2θ/dt^2 = 1

- Evaluate each at time t = 2 s.

                                        θ = 0.5*t^2 = 0.5*2^2 = 2 rad -----> 114.59°

                                        r = 1 m , dr / dt = 1 m/s , d^2 r / dt^2 = 0.5 m/s^2

- Evaluate the angle ψ between radial and horizontal direction:

                                        tan Ψ = r / (dr/dθ) = 1 / 0.5

                                        Ψ = 63.43°

- Develop a free body diagram (attached) and the compute the radial and θ acceleration:

                                        a_r = d^2r / dt^2 - r * dθ/dt

                                        a_r = 0.5 - 1*(2)^2 = -3.5 m/s^2

                                        a_θ =  r * (d^2θ/dt^2) + 2 * (dr/dt) * (dθ/dt)

                                        a_θ = 1(1) + 2*(1)*(2) = 5 m/s^2

- Using Newton's Second Law of motion to construct equations in both radial and θ directions as follows:

Radial direction:              N_c * cos(26.57) - W*cos(24.59) = m*a_r

θ direction:                      F  - N_c * sin(26.57) + W*sin(24.59) = m*a_θ

Where, F is the force on the peg by rod and N_c is the normal force on peg by the slot. W is the weight of the peg. Using radial equation:

                                       N_c * cos(26.57) - 4.905*cos(24.59) = 0.5*-3.5

                                       N_c = 3.03 N

                                       F  - 3.03 * sin(26.57) + 4.905*sin(24.59) = 0.5*5

                                       F = 1.81 N

4 0
3 years ago
Please help me bro come on
melomori [17]
Answer:

12

Explanation:

5 • 3 = 15
3 • 3 = 9
4 • 3 = 12
6 0
3 years ago
Read 2 more answers
How does load transfer of space needle​
UkoKoshka [18]

Answer:

The Space Needle is a cut away with minimal residual deflection due to load transfer.

4 0
2 years ago
Other questions:
  • A 600-MW steam power plant, which is cooled by a nearby river, has a thermal efficiency of 54 percent. Determine the rate of hea
    9·1 answer
  • Can I get a hand? Thanks y’all much luv
    13·1 answer
  • Imagine you work for the public housing agency of a city, and you have been charged with keeping track of who is living in the a
    15·1 answer
  • Viscous effects are negligible outside of the hydrodynamic boundary layer. (3 points) a. True b. False
    5·1 answer
  • The simple majority decision rule may generate results that are
    7·1 answer
  • if a voltage is applied to a capacitor, current flows easily at first and then slows as the capacitor becomes charged. Inductors
    5·1 answer
  • In remote areas, your gps devices may lose reception. It’s a good idea to have a
    7·2 answers
  • Consider a step pn junction made of GaAs at T = 300 K. At zero bias, only 20% of the total depletion region width is in the p-si
    11·1 answer
  • A steel bar with a diameter of .875 inches and a length of 15.0 ft is axially loaded with a force of 21.6 kip. The modulus of el
    10·1 answer
  • 2. BCD uses 6 bits to represent a symbol. a) True b) False​
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!