1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
TEA [102]
3 years ago
7

How do you connect several springs to increase the equivalent stiffness? What is one example from industry or other real-life si

tuations where this occurs?
Engineering
1 answer:
Masteriza [31]3 years ago
7 0

Answer: the answer for that question is the springs should be connected in series.

-we can consider the segments of a helix arrow as springs in series

Explanation:

a characteristic  of this system of springs is that, performing a free body analysis for  each of the springs follows that, the force applied to each of  the springs is the same.

This is the fundamental characteristic of the springs  that act in "series"

You might be interested in
Water vapor at 10 MPa, 600°C enters a turbine operating at steady state with a volumetric flow rate of 0.36 m3/s and exits at 0.
elena-s [515]

Answer:

Hook's law holds good up to. A elastic limit. B. plastic limit. C.yield point. D.Breaking point

8 0
3 years ago
Describe, in a general form, the equation, in time domain, that tells the voltage across a inductor, L, as a function of time wh
love history [14]

Answer:

a) V(t) = Ldi(t)/dt

b) If current is constant, V = 0

Explanation:

a) The voltage, V(t), across an inductor is proportional to the rate of change of the current flowing across it with time.

If  V represents the Voltage across the inductor

and i(t) represents the current across the inductor in time, t.

V(t) ∝ di(t)/dt

Introducing a proportionality constant,L, which is the inductance of the inductor

The general equation describing the voltage across the inductor of inductance, L, as a function of time when a current flows through it is shown below.

V(t) = Ldi(t)/dt ..................................................(1)

b) If the current flowing through the inductor is constant i.e. does not vary with time

di(t)/dt = 0   and hence the general equation (1) above becomes

V(t) = 0

4 0
3 years ago
A binary geothermal power plant uses geothermal water at 160°C as the heat source. The cycle operates on the simple Rankine cycl
bogdanovich [222]

A binary geothermal power operates on the simple Rankine cycle with isobutane as the working fluid. The isentropic efficiency of the turbine, the net power output, and the thermal efficiency of the cycle are to be determined

Assumptions :

1.  Steady operating conditions exist.

2.  Kinetic and potential energy changes are negligible.

Properties:  The specific heat of geothermal water ( c_{geo}[) is taken to be 4.18 kJ/kg.ºC.  

Analysis (a) We need properties of isobutane, we can obtain the properties from EES.

a. Turbine

PP_{3} = 3.25mPa = (3.25*1000) kPa\\= 3250kPa\\from the EES TABLE\\h_{3} = 761.54 kJ/kg\\s_{3} = 2.5457 kJ/kg\\P_{4} = 410kPa\\\\s_{4} = s_{3} \\h_{4s} = 470.40kJ/kg\\\\T_{4} = 179.5^{0} C\\\\h_{4} = 689.74 kJ/KG\\\\ The  isentropic  efficiency, n_{T} = \frac{h_{3}-h_{4}  }{h_{3}- h_{4s} }

==\frac{761.54-689.74}{761.54-670.40} \\=\frac{71.8}{91.14} \\=0.788

b. Pump

h_{1} = h_{f} @ 410kPa = 273.01kJ/kg\\v_{1} = v_{f} @ 410kPa = 0.001842 m^{3}/kgw_{p,in} =  \frac{v_{1}(P_{2}-P_{1})   }{n_{p} } \\\\= \frac{0.01842(3250-410)}{0.9} \\\\ =5.81kJ/kg\\h_{2} =h_{1} + w_{p,in}\\          = 273.01+5.81\\           = 278.82 kJ/kg\\\\w_{T,out} = m^{.}  (h_{3} -h_{4} )\\=(305.6)(761.54-689.74)\\=305.6(71.8)\\=21,942kW\\\\

W^{.} _ {P,in} = m^{.} (h_{2} -h_{1}) \\=m^{.}  w_{p,in \\=305.6(5.81)\\\\=1,777kW\\W^{.}  _{net} = W^{.} _{T, out} - W^{.}  _{P,in} \\= 21,942-1,777\\=20,166 kW\\\\HEAT EXCHANGER\\\\Q_{in} = m^{.} _{geo} c_{geo} (T_{in-T_{out} } )\\=555.9(4.18)(160-90)\\=162.656kW\\

c. The thermal efficiency of the cycle  n_{th}  =\frac{W^{.} _{net} }{Q^{._{in} } } \\\\= \frac{20,166}{162,656} \\=0.124\\=12.4%

7 0
3 years ago
Read 2 more answers
What is the weight density of a 2.24 in diameter titanium sphere that weights 0.82 lb?
nasty-shy [4]

Answer:

0.14\ lb/in^{3}

Explanation:

Density is defined as mass ler unit volume, expressed as

\rho=\frac {m}{v}

Where m is mass, \rho is density and v is the volume. For a sphere, volume is given as

v=\frac {4\pi r^{3}}{3}

Replacing this into the formula of density then

\rho=\frac {m}{\frac {4\pi r^{3}}{3}}

Given diameter of 2.24 in then the radius is 1.12 in. Substituting 0.82 lb for m then

\rho=\frac {0.82}{\frac {4\pi 1.12^{3}}{3}}=0.13932044952427\approx 0.14 lb/in^{3}

4 0
3 years ago
Which bulb has the lowest total cost of operation? (a) Incandescent (b) Fluorescent (c) LED
Finger [1]

Answer: LED have the lowest cost of operation.

Explanation:

If we ignore the initial procurement cost of the items the operational cost of any device consuming electricity is given by

Cost=Energy\times cost/unit

Among the three item's LED consumes the lowest power to give the same level of brightness as compared to the other 2 item's thus LED's shall have the lowest operational cost.

6 0
3 years ago
Other questions:
  • A rubber wheel on a steel rim spins freely on a horizontal axle that is suspended by a fixed pivot at point P. When the wheel sp
    11·1 answer
  • The type of current that flows from the electrode across the arc to the work is called what?
    5·1 answer
  • 1. What is an op-amp? List the characteristics of an ideal op-amp
    11·1 answer
  • For a rod of annealed AISI 1018 steel with a cross sectional area of 0.65 in^2?; what is the maximum tensile load Pmax that shou
    10·1 answer
  • Type a C statement that declares and initializes variable taxRate to the value 0.085. Make sure to include a prefix 0 before typ
    14·1 answer
  • How should employees talk to clients)
    9·1 answer
  • A coal-fired power plant is burning bituminous coal that has an energy content of 12,000 Btu/lb. The power plant is burning the
    13·1 answer
  • What does abbreviation vom stand for
    14·2 answers
  • Explain crystallographic defects.
    11·1 answer
  • What major problems could you encounter in complex intersections?
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!