1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
love history [14]
3 years ago
6

Anita and Leah each had a bottle of water. The fraction of the bottle that Anita

Mathematics
1 answer:
zepelin [54]3 years ago
3 0

Answer:

<u><em>5/8</em></u>

Step-by-step explanation:

<u><em>5/8</em></u> is the answer beacuse point A is 7/8 on the number line and leah drank 1/4 or 2/8 less than anita so 7/8-2/8=<em><u>5/8</u></em>

You might be interested in
Q 1.) Expand using identities:<br>i. (a+2b)²<br>ii. (5x-3y)²<br>iii. (3a+4)(3a-4)(9a²+16)<br>​
Ganezh [65]

Step-by-step explanation:

#1.

(a + 2b)²

<em>Using identity (x + y)² = x² + 2xy + y², we get:</em>

= (a)² + (2b)² + 2 × (a) × (2b)

= a² + 4b² + 4ab

= a² + 4ab + 4b² Ans.

#2.

(5x - 3y)²

<em>Using identity (a - b)² = a² - 2ab + b², we get:</em>

= (5x)² + (3y)² - 2 × (5x) × (3y)

= 25x² + 9y² - 30xy

= 25x² - 30xy + 9y² Ans.

#3.

(3a + 4)(3a - 4)(9a² + 16)

<em>Using identity (x + y)(x - y) = x² - y², we get:</em>

= [(3a)² - (4)²][9a² + 16]

= (9a² - 16)(9a² + 16)

= (9a²)² - (16)²

= 81a⁴ - 256 Ans.

4 0
2 years ago
Find the volume V of the solid obtained by rotating the region bounded by the given curves about the specified line. y = x, y =
miss Akunina [59]

Answer:

381.18 cubic units

Step-by-step explanation:

Graph the region:

desmos.com/calculator/iwvreqjz2m

The region is a trapezoid.  When we rotate it about x = 1, we get a hollow cylinder shape.  We can either use washer method or shell method to find the volume.

If we find the volume using washer method, we'll have to use two integrals, one for the triangular part of the trapezoid and one for rectangular part.  If we use shell method, we only need one integral.  So let's use shell method.

Cut a thin, vertical slice of the region.  The width of this slice is dx.  The height of the slice is y₂ − y₁ = x − 0 = x.  The radius of the shell is x − 1.

The volume of the shell is:

dV = 2π (x − 1) (x) dx

dV = 2π (x² − x) dx

The total volume is the sum of all the shells from x=5 to x=7.

V = ∫ dV

V = ∫₅⁷ 2π (x² − x) dx

V = 2π ∫₅⁷ (x² − x) dx

V = 2π (⅓ x³ − ½ x² + C) |₅⁷

V = 2π [(⅓ 7³ − ½ 7² + C) − (⅓ 5³ − ½ 5² + C)]

V = 2π [⅓ 7³ − ½ 7² − ⅓ 5³ + ½ 5²]

V = 2π [⅓ (7³ − 5³) + ½ (5² − 7²)]

V = 2π [⅓ (218) + ½ (-24)]

V = 2π (72⅔ − 12)

V = 121⅓ π

V ≈ 381.18

The volume is approximately 381.18 cubic units.

6 0
3 years ago
A cable company charges $70 per month
kari74 [83]

Step-by-step explanation:

can you clarify more please i cant help you answer this question

7 0
3 years ago
Solve irrational equation pls
rusak2 [61]
\hbox{Domain:}\\&#10;x^2+x-2\geq0 \wedge x^2-4x+3\geq0 \wedge x^2-1\geq0\\&#10;x^2-x+2x-2\geq0 \wedge x^2-x-3x+3\geq0 \wedge x^2\geq1\\&#10;x(x-1)+2(x-1)\geq 0 \wedge x(x-1)-3(x-1)\geq0 \wedge (x\geq 1 \vee x\leq-1)\\&#10;(x+2)(x-1)\geq0 \wedge (x-3)(x-1)\geq0\wedge x\in(-\infty,-1\rangle\cup\langle1,\infty)\\&#10;x\in(-\infty,-2\rangle\cup\langle1,\infty) \wedge x\in(-\infty,1\rangle \cup\langle3,\infty) \wedge x\in(-\infty,-1\rangle\cup\langle1,\infty)\\&#10;x\in(-\infty,-2\rangle\cup\langle3,\infty)


&#10;\sqrt{x^2+x-2}+\sqrt{x^2-4x+3}=\sqrt{x^2-1}\\&#10;x^2-1=x^2+x-2+2\sqrt{(x^2+x-2)(x^2-4x+3)}+x^2-4x+3\\&#10;2\sqrt{(x^2+x-2)(x^2-4x+3)}=-x^2+3x-2\\&#10;\sqrt{(x^2+x-2)(x^2-4x+3)}=\dfrac{-x^2+3x-2}{2}\\&#10;(x^2+x-2)(x^2-4x+3)=\left(\dfrac{-x^2+3x-2}{2}\right)^2\\&#10;(x+2)(x-1)(x-3)(x-1)=\left(\dfrac{-x^2+x+2x-2}{2}\right)^2\\&#10;(x+2)(x-3)(x-1)^2=\left(\dfrac{-x(x-1)+2(x-1)}{2}\right)^2\\&#10;(x+2)(x-3)(x-1)^2=\left(\dfrac{-(x-2)(x-1)}{2}\right)^2\\&#10;(x+2)(x-3)(x-1)^2=\dfrac{(x-2)^2(x-1)^2}{4}\\&#10;4(x+2)(x-3)(x-1)^2=(x-2)^2(x-1)^2\\
&#10;4(x+2)(x-3)(x-1)^2-(x-2)^2(x-1)^2=0\\&#10;(x-1)^2(4(x+2)(x-3)-(x-2)^2)=0\\&#10;(x-1)^2(4(x^2-3x+2x-6)-(x^2-4x+4))=0\\&#10;(x-1)^2(4x^2-4x-24-x^2+4x-4)=0\\&#10;(x-1)^2(3x^2-28)=0\\&#10;x-1=0 \vee 3x^2-28=0\\&#10;x=1 \vee 3x^2=28\\&#10;x=1 \vee x^2=\dfrac{28}{3}\\&#10;x=1 \vee x=\sqrt{\dfrac{28}{3}} \vee x=-\sqrt{\dfrac{28}{3}}\\

There's one more condition I forgot about
-(x-2)(x-1)\geq0\\&#10;x\in\langle1,2\rangle\\

Finally
x\in(-\infty,-2\rangle\cup\langle3,\infty) \wedge x\in\langle1,2\rangle \wedge x=\{1,\sqrt{\dfrac{28}{3}}, -\sqrt{\dfrac{28}{3}}\}\\&#10;\boxed{\boxed{x=1}}
3 0
3 years ago
On Monday, 187 students went on a feldtrip to the zoo.All 4 busses were filled and 7 dtudents in a van.How many student were in
RoseWind [281]

Step-by-step explanation:

7 students were in the van so 187 - 7 = 180. 180 ÷ 4 = 45, there were 45 students on each bus. Not sure if this makes total sense, hope it helps

3 0
3 years ago
Read 2 more answers
Other questions:
  • You increase the size of a computer screen display by 20%. Then you decrease it by 20%. What is the size of the computer screen
    6·2 answers
  • 2xa(-4xb - 2x 3 + 5x)
    13·1 answer
  • 126 divide 6' long division
    10·1 answer
  • Given that Triangle ABC ~ DEF, solve for x.
    9·2 answers
  • If EG = 19 and FG<br> EF = [?]<br> 12, then<br> E<br> F<br> G
    5·1 answer
  • Which number is not in the mean median or mode of the data set for 3 15 11 3 8 7 5​
    5·1 answer
  • Click on the picture above ! Please help!
    14·2 answers
  • Type in the missing terms in this sequence of square numbers.
    6·1 answer
  • In 1989, Carl Lewis established a world record when he ran the 100. meter dash in 9.92 seconds. What was his average speed (in m
    7·1 answer
  • Which is the graph of a quadratic equation that has a positive discriminant?
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!