Between 10 and 11, all the others would be to much or to little
Answer:
what is the question please explain
Step-by-step explanation:
I am not sure what your problem here is.
you understand the inequality signs ?
anyway, to get
6×f(-2) + 3×g(1)
we can calculate every part of the expression separately, and then combine all the results into one final result.
f(-2)
we look at the definition.
into what category is -2 falling ? the one with x<-2, or the one with x>=-2 ?
is -2 < -2 ? no.
is -2 >= -2 ? yes, because -2 = -2. therefore, it is also >= -2.
so, we have to use
1/3 x³
for x = -2 that is
1/3 × (-2)³ = 1/3 × -8 = -8/3
g(1)
again, we look at the definition.
into what category is 1 falling ? the one with x > 2 ? or the one with x <= 1 ?
is 1 > 2 ? no.
is 1 <= 1 ? yes, because 1=1. therefore it is also <= 1.
so we have to use
2×|x - 1| + 3
for x = 1 we get
2×0 + 3 = 3
6×f(-2) = 6 × -8/3 = 2× -8 = -16
3×g(1) = 3× 3 = 9
and so in total we get
6×f(-2) + 3×g(1) = -16 + 9 = -7
78
step by step explanation:
first: divide 600 and 15
answer to 600/15: 40
second: divide 3120 and 40
final answer: 78
Answer:
a) P(Y > 76) = 0.0122
b) i) P(both of them will be more than 76 inches tall) = 0.00015
ii) P(Y > 76) = 0.0007
Step-by-step explanation:
Given - The heights of men in a certain population follow a normal distribution with mean 69.7 inches and standard deviation 2.8 inches.
To find - (a) If a man is chosen at random from the population, find
the probability that he will be more than 76 inches tall.
(b) If two men are chosen at random from the population, find
the probability that
(i) both of them will be more than 76 inches tall;
(ii) their mean height will be more than 76 inches.
Proof -
a)
P(Y > 76) = P(Y - mean > 76 - mean)
= P(
) >
)
= P(Z >
)
= P(Z >
)
= P(Z > 2.25)
= 1 - P(Z ≤ 2.25)
= 0.0122
⇒P(Y > 76) = 0.0122
b)
(i)
P(both of them will be more than 76 inches tall) = (0.0122)²
= 0.00015
⇒P(both of them will be more than 76 inches tall) = 0.00015
(ii)
Given that,
Mean = 69.7,
= 1.979899,
Now,
P(Y > 76) = P(Y - mean > 76 - mean)
= P(
)) >
)
= P(Z >
)
= P(Z >
))
= P(Z > 3.182)
= 1 - P(Z ≤ 3.182)
= 0.0007
⇒P(Y > 76) = 0.0007