Answer:
The point estimate of the population mean for the confidence interval of (15,32) is 23.5
Step-by-step explanation:
We are given the following information in the question:
Confidence interval for population mean is (15, 32).
We have to find the point estimate for population mean.
Formula:

The point estimate of the population mean for the confidence interval of (15, 32) is 23.5
Answer: 14 a hour
Step-by-step explanation:
First off, your chances of red are not really 50-50. You are overlooking the 0 slot or the 00 slot which are green. So, chances of red are 18 in 37 (0 slot) or 38 (0 and 00 slots). With a betting machine, the odds does not change no trouble what has occurred before. Think through the simplest circumstance, a coin toss. If I toss heads 10 times one after the other, the chances of tails about to happen on the next toss are still on a 50-50. A betting machine has no ability, no plan, and no past.
Chances (0 slot) that you success on red are 18 out of 37 (18 red slots), but likelihoods of losing are 19 out of 37 (18 black plus 0). For the wheel with both a 0 and 0-0 slot, the odds are poorer. You chances of red are 18 out of 38 (18 red slots win), and down are 20 out of 38 (18 black plus 0 and 00). It does not really matter on how long you play there, the probabilities would always continue the same on every spin. The lengthier you play, the more thoroughly you will tie the chances with a total net loss of that portion of a percent in accord of the house. 18 winning red slots and either 19 or 20 losing slots.
Answer:
$0.025x² . . . where x is a number of percentage points
Step-by-step explanation:
The multiplier for semi-annual compounding will be ...
(1 + x/2)² = 1 + x + x²/4
The multiplier for annual compounding will be ...
1 + x
The multiplier for semiannual compounding is greater by ...
(1 + x + x²/4) - (1 + x) = x²/4
Maria's interest will be greater by $1000×(x²/4) = $250x², where x is a decimal fraction.
If x is a percent value, as in x = 6 when x percent = 6%, then the difference amount is ...
$250·(x/100)² = $0.025x² . . . where x is a number of percentage points
_____
<u>Example</u>:
For x percent = 6%, the difference in interest earned on $1000 for one year is $0.025×6² = $0.90.
OK, so the graph is a parabola, with points x=0,y=0; x=6,y=-9; and x=12,y=0
Because the roots of the equation are 0 and 12, we know the formula is therefore of the form
y = ax(x - 12), for some a
So put in x = 6
-9 = 6a(-6)
9 = 36a
a = 1/4
So the parabola has a curve y = x(x-12) / 4, which can also be written y = 0.25x² - 3x
The gradient of this is dy/dx = 0.5x - 3
The key property of a parabolic dish is that it focuses radio waves travelling parallel to the y axis to a single point. So we should arrive at the same focal point no matter what point we chose to look at. So we can pick any point we like - e.g. the point x = 4, y = -8
Gradient of the parabolic mirror at x = 4 is -1
So the gradient of the normal to the mirror at x = 4 is therefore 1.
Radio waves initially travelling vertically downwards are reflected about the normal - which has a gradient of 1, so they're reflected so that they are travelling horizontally. So they arrive parallel to the y axis, and leave parallel to the x axis.
So the focal point is at y = -8, i.e. 1 metre above the back of the dish.