Answer:
Solution of given quadratic equation is
![$ (\frac{8i}{3}, -\frac{8i}{3} ) $](https://tex.z-dn.net/?f=%24%20%28%5Cfrac%7B8i%7D%7B3%7D%2C%20-%5Cfrac%7B8i%7D%7B3%7D%20%29%20%24)
Step-by-step explanation:
The given quadratic equation is
![9x^2 + 64 = 0](https://tex.z-dn.net/?f=9x%5E2%20%2B%2064%20%3D%200)
The general form of the quadratic equation is given by
![ax^2 + bx + c = 0](https://tex.z-dn.net/?f=ax%5E2%20%2B%20bx%20%2B%20c%20%3D%200)
Comparing the general form with the given quadratic equation
![a = 9\\b = 0\\c = 64](https://tex.z-dn.net/?f=a%20%3D%209%5C%5Cb%20%3D%200%5C%5Cc%20%3D%2064)
The solutions of the quadratic equation is given by
![$x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$](https://tex.z-dn.net/?f=%24x%3D%5Cfrac%7B-b%5Cpm%5Csqrt%7Bb%5E2-4ac%7D%7D%7B2a%7D%24)
Substitute the values of a, b and c
![$x=\frac{-0\pm\sqrt{0^2-4(9)(64)}}{2(9)}$](https://tex.z-dn.net/?f=%24x%3D%5Cfrac%7B-0%5Cpm%5Csqrt%7B0%5E2-4%289%29%2864%29%7D%7D%7B2%289%29%7D%24)
![$x=\frac{\pm\sqrt{-2304}}{18}$](https://tex.z-dn.net/?f=%24x%3D%5Cfrac%7B%5Cpm%5Csqrt%7B-2304%7D%7D%7B18%7D%24)
![$x=\frac{\pm48i}{18}$](https://tex.z-dn.net/?f=%24x%3D%5Cfrac%7B%5Cpm48i%7D%7B18%7D%24)
![$x=\frac{\pm8i}{3}$](https://tex.z-dn.net/?f=%24x%3D%5Cfrac%7B%5Cpm8i%7D%7B3%7D%24)
and
![$x=-\frac{8i}{3}$](https://tex.z-dn.net/?f=%24x%3D-%5Cfrac%7B8i%7D%7B3%7D%24)
Where i represents iota which means that the given quadratic equation has complex roots.
So the solution of given quadratic equation is
![$ (\frac{8i}{3}, -\frac{8i}{3} ) $](https://tex.z-dn.net/?f=%24%20%28%5Cfrac%7B8i%7D%7B3%7D%2C%20-%5Cfrac%7B8i%7D%7B3%7D%20%29%20%24)
The factored form of the given quadratic equation is
![$ (x+ \frac{8i}{3}) (x- \frac{8i}{3}) = 0 $](https://tex.z-dn.net/?f=%24%20%28x%2B%20%5Cfrac%7B8i%7D%7B3%7D%29%20%20%28x-%20%5Cfrac%7B8i%7D%7B3%7D%29%20%20%3D%200%20%24)