1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
3241004551 [841]
3 years ago
7

Find the value of x. round the length to the nearest tenth

Mathematics
1 answer:
levacccp [35]3 years ago
5 0

Answer:C

Step-by-step explanation:

You might be interested in
Please answer this question, i request
Jet001 [13]

{\large{\textsf{\textbf{\underline{\underline{Given :}}}}}}

\star  \:  \tt \cot  \theta = \dfrac{7}{8}

{\large{\textsf{\textbf{\underline{\underline{To \: Evaluate :}}}}}}

\star \:  \tt \dfrac{(1  +  \sin \theta)(1 - \sin \theta) }{(1 +  \cos \theta) (1  -  \cos \theta) }

{\large{\textsf{\textbf{\underline{\underline{Solution :}}}}}}

Consider a \triangle ABC right angled at C and \sf \angle \: B = \theta

Then,

‣ Base [B] = BC

‣ Perpendicular [P] = AC

‣ Hypotenuse [H] = AB

\therefore \tt \cot  \theta   =  \dfrac{Base}{ Perpendicular}  =  \dfrac{BC}{AC} = \dfrac{7}{8}

Let,

Base = 7k and Perpendicular = 8k, where k is any positive integer

In \triangle ABC, H² = B² + P² by Pythagoras theorem

\longrightarrow \tt {AB}^{2}  =   {BC}^{2}  +   {AC}^{2}

\longrightarrow \tt {AB}^{2}  =   {(7k)}^{2}  +   {(8k)}^{2}

\longrightarrow \tt {AB}^{2}  =   49{k}^{2}  +   64{k}^{2}

\longrightarrow \tt {AB}^{2}  =   113{k}^{2}

\longrightarrow \tt AB  =   \sqrt{113  {k}^{2} }

\longrightarrow \tt AB = \red{  \sqrt{113}  \:  k}

Calculating Sin \sf \theta

\longrightarrow  \tt \sin \theta = \dfrac{Perpendicular}{Hypotenuse}

\longrightarrow  \tt \sin \theta = \dfrac{AC}{AB}

\longrightarrow  \tt \sin \theta = \dfrac{8 \cancel{k}}{ \sqrt{113} \: \cancel{ k } }

\longrightarrow  \tt \sin \theta =  \purple{  \dfrac{8}{ \sqrt{113} } }

Calculating Cos \sf \theta

\longrightarrow  \tt \cos \theta = \dfrac{Base}{Hypotenuse}

\longrightarrow  \tt \cos \theta =  \dfrac{BC}{ AB}

\longrightarrow  \tt \cos \theta =  \dfrac{7 \cancel{k}}{ \sqrt{113} \:  \cancel{k } }

\longrightarrow  \tt \cos \theta =  \purple{ \dfrac{7}{ \sqrt{113} } }

<u>Solving the given expression</u><u> </u><u>:</u><u>-</u><u> </u>

\longrightarrow \:  \tt \dfrac{(1  +  \sin \theta)(1 - \sin \theta) }{(1 +  \cos \theta) (1  -  \cos \theta) }

Putting,

• Sin \sf \theta = \dfrac{8}{ \sqrt{113} }

• Cos \sf \theta = \dfrac{7}{ \sqrt{113} }

\longrightarrow \:  \tt \dfrac{ \bigg(1 +  \dfrac{8}{ \sqrt{133}} \bigg) \bigg(1 - \dfrac{8}{ \sqrt{133}} \bigg) }{\bigg(1 +  \dfrac{7}{ \sqrt{133}} \bigg) \bigg(1 - \dfrac{7}{ \sqrt{133}} \bigg)}

<u>Using</u><u> </u><u>(</u><u>a</u><u> </u><u>+</u><u> </u><u>b</u><u> </u><u>)</u><u> </u><u>(</u><u>a</u><u> </u><u>-</u><u> </u><u>b</u><u> </u><u>)</u><u> </u><u>=</u><u> </u><u>a²</u><u> </u><u>-</u><u> </u><u>b²</u>

\longrightarrow \:  \tt  \dfrac{ { \bigg(1 \bigg)}^{2}  -  { \bigg(  \dfrac{8}{ \sqrt{133} } \bigg)}^{2}   }{ { \bigg(1 \bigg)}^{2}  -  { \bigg(  \dfrac{7}{ \sqrt{133} } \bigg)}^{2}  }

\longrightarrow \:  \tt   \dfrac{1 -  \dfrac{64}{113} }{ 1 - \dfrac{49}{113} }

\longrightarrow \:  \tt   \dfrac{ \dfrac{113 - 64}{113} }{  \dfrac{113 - 49}{113} }

\longrightarrow \:  \tt { \dfrac  { \dfrac{49}{113} }{  \dfrac{64}{113} } }

\longrightarrow \:  \tt   { \dfrac{49}{113} }÷{  \dfrac{64}{113} }

\longrightarrow \:  \tt    \dfrac{49}{ \cancel{113}} \times     \dfrac{ \cancel{113}}{64}

\longrightarrow \:  \tt   \dfrac{49}{64}

\qquad  \:  \therefore  \:  \tt \dfrac{(1  +  \sin \theta)(1 - \sin \theta) }{(1 +  \cos \theta) (1  -  \cos \theta) }  =   \pink{\dfrac{49}{64} }

\begin{gathered} {\underline{\rule{300pt}{4pt}}} \end{gathered}

{\large{\textsf{\textbf{\underline{\underline{We \: know :}}}}}}

✧ Basic Formulas of Trigonometry is given by :-

\begin{gathered}\begin{gathered}\boxed { \begin{array}{c c} \\ \bigstar \:  \sf{ In \:a \:Right \:Angled \: Triangle :}  \\ \\ \sf {\star Sin \theta = \dfrac{Perpendicular}{Hypotenuse}} \\\\ \sf{ \star \cos \theta = \dfrac{ Base }{Hypotenuse}}\\\\ \sf{\star \tan \theta = \dfrac{Perpendicular}{Base}}\\\\ \sf{\star \cosec \theta = \dfrac{Hypotenuse}{Perpendicular}} \\\\ \sf{\star \sec \theta = \dfrac{Hypotenuse}{Base}}\\\\ \sf{\star \cot \theta = \dfrac{Base}{Perpendicular}} \end{array}}\\\end{gathered} \end{gathered}

{\large{\textsf{\textbf{\underline{\underline{Note :}}}}}}

✧ Figure in attachment

\begin{gathered} {\underline{\rule{200pt}{1pt}}} \end{gathered}

3 0
2 years ago
A cupcake shop uses 1/3 pounds of cinnamon to make 4 batches. How much do they use per batch?
tiny-mole [99]
1/12 of a pound.
you must use the reciprocal of 4, 1/4, then multiply. so 1/3*1/4= 1/12
5 0
3 years ago
Read 2 more answers
What is the difference between 8753 and 967?<br>​
evablogger [386]

Answer:

7786

Step-by-step explanation:

8753-967

=7786

4 0
3 years ago
Read 2 more answers
The pyramid shown has a square base that is 14 centimeters on each side. The slant height is 15 centimeters. What is the surface
Ksenya-84 [330]
We know that

surface area=area of the base+4*[area of one lateral triangle side]

area of the base=b²
b is the side length of the square
b=14 cm
area of the base=14²-----> 196 cm²

area of one lateral triangle side=b*h/2
b is the side length of the square
b=14 cm
h is the height of the lateral triangle side
h is equal to the slant height 
h=15 cm

area of one lateral triangle side=14*15/2----> 105 cm²

surface area=196+4*[105]------> 616 cm²

the answer is
the surface area is 616 cm²
7 0
3 years ago
Steel Factory Workers Ages
igor_vitrenko [27]

Solution: We are given the population mean =42

Now, in order to find which shift's mean is closest to population mean, we will find the mean of each shift.

The mean of shift 1 is:

Mean=\frac{18+25+56+42+29+38+54+47+35+30}{10}=\frac{374}{10}=37.4

The mean of shift 2 is:

Mean=\frac{23+19+50+49+67+34+30+59+40+33&#10;}{10}=\frac{404}{10}=40.4

The mean of shift 3 is:

Mean=\frac{19+22+24+40+45+29+33+29+39+59  }{10}=\frac{339}{10}=33.9

The mean of shift 4 is:

Mean=\frac{21+23+25+40+35+19+70+40+22+23  }{10}=\frac{318}{10}=31.8

We clearly see the mean of shift 2 is close to the population mean. Hence the option B) Shift 2 is correct.

7 0
3 years ago
Read 2 more answers
Other questions:
  • Write the number in two other forms 7.32
    15·1 answer
  • Also another answer choice, D 9.9
    12·1 answer
  • $500,3.75%,4 Months Use I=Prt
    5·1 answer
  • What is the y value
    12·2 answers
  • Aaliyah has $50 in a savings account. The interest rate is 5% per year and is not compounded. How much will she have in 1 year?
    12·2 answers
  • Calculate the mean of 66,73,65,60​
    5·1 answer
  • PLEASE HELP THIS IS URGENT!!​
    9·1 answer
  • Given f(x)=-2x^3 + 3x^2 , find the equation of that tangent line of f at the point where x=2.
    5·1 answer
  • Cual es el LCD de 8, 12
    9·1 answer
  • Help as soon as you can pls!!<br> I’m a bit confused on the questions asked below
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!