Answer:
The mode and Median would be lower than the mean.
Step-by-step explanation:
The distribution data is positively skewed which means that most of the data would be towards the lower side. In this situation the mean is higher than the mode and median. Dr. Hammer has distribution data which is positively skewed so the mode and median will be lower than the mean.
Since we know that 1/4 is equal to 25%, or 0.25 in decimal form, we are able to work with 0.75 in the expression.
We are told to use j as the original price of the jeans, so we can set up the expression:

to represent the cost of the jeans with the discount.
Then to simplify, we simply take out j as a common factor, and solve what's in the parentheses:

or 
Using this equation, we can solve for the b part of the question. If the pair of jeans originally costs $60, plug in 60 to where j is in the expression:


Therefore, the cost of the jeans after the discount is C) $45.
Answer and step-by-step explanation:
The polar form of a complex number
is the number
where
is called the modulus and
is called the argument. You can switch back and forth between the two forms by either remembering the definitions or by graphing the number on Gauss plane. The advantage of using polar form is that when you multiply, divide or raise complex numbers in polar form you just multiply modules and add arguments.
(a) let's first calculate moduli and arguments

now we can write the two numbers as

(b) As noted above, the argument of the product is the sum of the arguments of the two numbers:

(c) Similarly, when raising a complex number to any power, you raise the modulus to that power, and then multiply the argument for that value.
![(z_1)^1^2=[4e^{-i\frac \pi6}]^1^2=4^1^2\cdot (e^{-i\frac \pi6})^1^2=2^2^4\cdot e^{-i(12)\frac\pi6}\\=2^2^4 e^{-i\cdot2\pi}=2^2^4](https://tex.z-dn.net/?f=%28z_1%29%5E1%5E2%3D%5B4e%5E%7B-i%5Cfrac%20%5Cpi6%7D%5D%5E1%5E2%3D4%5E1%5E2%5Ccdot%20%28e%5E%7B-i%5Cfrac%20%5Cpi6%7D%29%5E1%5E2%3D2%5E2%5E4%5Ccdot%20e%5E%7B-i%2812%29%5Cfrac%5Cpi6%7D%5C%5C%3D2%5E2%5E4%20e%5E%7B-i%5Ccdot2%5Cpi%7D%3D2%5E2%5E4)
Now, in the last step I've used the fact that
, or in other words, the complex exponential is periodic with
as a period, same as sine and cosine. You can further compute that power of two with the help of a calculator, it is around 16 million, or leave it as is.
Answer:
It's true because its a rational number.
Step-by-step explanation: