1. Regroup terms
x^3 - 6 * 10x^2x-8/ x-3
2. Use product rule
x^3 - 6 * 10x^ 2+1 - 8/ x-3
3. Simplify
x^3 - 6 * 10 x^3 - 8/ x-3
4. Simplify further
x^3 - 60x^3 - 8/ x-3
5. Simplify the last time
-59x^3-8/x-3
Answer:
not possible
Step-by-step explanation:
Amplitude:4
Equation of Midline: 2
Period of function:3
Function shifted left:0.5
Function shifted up: 2
Answer:

Step-by-step explanation:
Ok, so we start by setting the integral up. The integral we need to solve is:

so according to the instructions of the problem, we need to start by using some substitution. The substitution will be done as follows:
U=5+x
du=dx
x=U-5
so when substituting the integral will look like this:

now we can go ahead and integrate by parts, remember the integration by parts formula looks like this:

so we must define p, q, p' and q':
p=ln U


q'=U-5
and now we plug these into the formula:

Which simplifies to:

Which solves to:

so we can substitute U back, so we get:

and now we can simplify:



notice how all the constants were combined into one big constant C.