1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
LenKa [72]
3 years ago
14

Help me with this please​

Mathematics
2 answers:
Tpy6a [65]3 years ago
5 0
The correct answer is D
ololo11 [35]3 years ago
3 0
I think the answer is t
You might be interested in
Find the product. -2x(x2 - 3)
zalisa [80]

Step-by-step explanation:

-2x(x2 - 3)

-2x³+6x

Hope it helps ☺️

5 0
3 years ago
What is the slope of a line perpendicular to the line that passes through (4, -3) and
m_a_m_a [10]

Answer:

1/2

Step-by-step explanation:

The slope of the points (4,-3) and (3,-1) is -2

The slope of a line perpendicular to said points would be the opposite reciprocal which would be 1/2

heres how you'd find the initial slope of the points

(4, -3)

-1  +2

(3, -1)

Slope= rise/run= 2/-1= -2

4 0
3 years ago
How do you simplify this math problem 5(1 + 3x) ?
lubasha [3.4K]

you need to distribute the 5. multiply each term in the parentheses by 5:

5(1) + 5(3x)

5 + 15x

5 0
3 years ago
A tank contains 180 gallons of water and 15 oz of salt. water containing a salt concentration of 17(1+15sint) oz/gal flows into
Stels [109]

Let A(t) denote the amount of salt (in ounces, oz) in the tank at time t (in minutes, min).

Salt flows in at a rate of

\dfrac{dA}{dt}_{\rm in} = \left(17 (1 + 15 \sin(t)) \dfrac{\rm oz}{\rm gal}\right) \left(8\dfrac{\rm gal}{\rm min}\right) = 136 (1 + 15 \sin(t)) \dfrac{\rm oz}{\min}

and flows out at a rate of

\dfrac{dA}{dt}_{\rm out} = \left(\dfrac{A(t) \, \mathrm{oz}}{180 \,\mathrm{gal} + \left(8\frac{\rm gal}{\rm min} - 8\frac{\rm gal}{\rm min}\right) (t \, \mathrm{min})}\right) \left(8 \dfrac{\rm gal}{\rm min}\right) = \dfrac{A(t)}{180} \dfrac{\rm oz}{\rm min}

so that the net rate of change in the amount of salt in the tank is given by the linear differential equation

\dfrac{dA}{dt} = \dfrac{dA}{dt}_{\rm in} - \dfrac{dA}{dt}_{\rm out} \iff \dfrac{dA}{dt} + \dfrac{A(t)}{180} = 136 (1 + 15 \sin(t))

Multiply both sides by the integrating factor, e^{t/180}, and rewrite the left side as the derivative of a product.

e^{t/180} \dfrac{dA}{dt} + e^{t/180} \dfrac{A(t)}{180} = 136 e^{t/180} (1 + 15 \sin(t))

\dfrac d{dt}\left[e^{t/180} A(t)\right] = 136 e^{t/180} (1 + 15 \sin(t))

Integrate both sides with respect to t (integrate the right side by parts):

\displaystyle \int \frac d{dt}\left[e^{t/180} A(t)\right] \, dt = 136 \int e^{t/180} (1 + 15 \sin(t)) \, dt

\displaystyle e^{t/180} A(t) = \left(24,480 - \frac{66,096,000}{32,401} \cos(t) + \frac{367,200}{32,401} \sin(t)\right) e^{t/180} + C

Solve for A(t) :

\displaystyle A(t) = 24,480 - \frac{66,096,000}{32,401} \cos(t) + \frac{367,200}{32,401} \sin(t) + C e^{-t/180}

The tank starts with A(0) = 15 oz of salt; use this to solve for the constant C.

\displaystyle 15 = 24,480 - \frac{66,096,000}{32,401} + C \implies C = -\dfrac{726,594,465}{32,401}

So,

\displaystyle A(t) = 24,480 - \frac{66,096,000}{32,401} \cos(t) + \frac{367,200}{32,401} \sin(t) - \frac{726,594,465}{32,401} e^{-t/180}

Recall the angle-sum identity for cosine:

R \cos(x-\theta) = R \cos(\theta) \cos(x) + R \sin(\theta) \sin(x)

so that we can condense the trigonometric terms in A(t). Solve for R and θ :

R \cos(\theta) = -\dfrac{66,096,000}{32,401}

R \sin(\theta) = \dfrac{367,200}{32,401}

Recall the Pythagorean identity and definition of tangent,

\cos^2(x) + \sin^2(x) = 1

\tan(x) = \dfrac{\sin(x)}{\cos(x)}

Then

R^2 \cos^2(\theta) + R^2 \sin^2(\theta) = R^2 = \dfrac{134,835,840,000}{32,401} \implies R = \dfrac{367,200}{\sqrt{32,401}}

and

\dfrac{R \sin(\theta)}{R \cos(\theta)} = \tan(\theta) = -\dfrac{367,200}{66,096,000} = -\dfrac1{180} \\\\ \implies \theta = -\tan^{-1}\left(\dfrac1{180}\right) = -\cot^{-1}(180)

so we can rewrite A(t) as

\displaystyle A(t) = 24,480 + \frac{367,200}{\sqrt{32,401}} \cos\left(t + \cot^{-1}(180)\right) - \frac{726,594,465}{32,401} e^{-t/180}

As t goes to infinity, the exponential term will converge to zero. Meanwhile the cosine term will oscillate between -1 and 1, so that A(t) will oscillate about the constant level of 24,480 oz between the extreme values of

24,480 - \dfrac{267,200}{\sqrt{32,401}} \approx 22,995.6 \,\mathrm{oz}

and

24,480 + \dfrac{267,200}{\sqrt{32,401}} \approx 25,964.4 \,\mathrm{oz}

which is to say, with amplitude

2 \times \dfrac{267,200}{\sqrt{32,401}} \approx \mathbf{2,968.84 \,oz}

6 0
2 years ago
Computer towers purchased for $30900 depreciates at a constant rate of 12.6% per year. Write the function that models the value
Paha777 [63]

Answer: the computer towers will be worth $10521 after 8 years

Step-by-step explanation:

We would apply the formula for exponential decay which is expressed as

A = P(1 - r)^t

Where

A represents the value of the computer towers after t years.

t represents the number of years.

P represents the initial value of the computer towers.

r represents rate of decay.

From the information given,

P = $30900

r = 12.6% = 12.6/100 = 0.126

Therefore, the function that models the value of the computer towers after (t)years from now is

A = 30900(1 - 0.126)^t

A = 30900(0.874)^t

Therefore, when t = 8 years, then

A = 30900(0.874)^8

A = $10521

6 0
3 years ago
Other questions:
  • Please help me with this page.
    8·1 answer
  • Write three different fractions that are less than 40%?
    13·2 answers
  • What is 29/12 as a decimal
    7·1 answer
  • Distance between the points (-3,5) and (-1,-2)
    8·1 answer
  • Don earns $18.25 per hour. This week, he earned $657 in straight-time pay. How many hours did he work?
    5·1 answer
  • giving brainliest!!!!!!!
    7·2 answers
  • Jermaine, Keira, and Leon are buying supplies for an art class. Jermaine bought 2 canvases, 4 tubes of paint, and 2 paint brushe
    9·1 answer
  • ANSWER IF YOU KNOW THE ANSWER!!! I WILL GIVE BRAINLIEST BTW!!!!!!!!!!!!!
    8·2 answers
  • Given - 4x/7greater 10
    12·1 answer
  • What is the derivative of 2√x ?
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!