The answer is zero
For each soda you would be the price would go up
The slope is that price that you buy the soda
Except since it is unlimited it means we don’t have to pay for the soda each time we buy one
So every time we buy a soda the price we pay for is not existent
I hope this helps
Answer:
what do you need help with?
Step-by-step explanation:
IS it math?
Given :
A holiday meal cost 12.50 a person plus a delivery fee of $30 at we cater.
The same meal cost $15 a person with no fee at Good Eats.
To Find :
When does we cater become the better deal.
Solution :
Let , x is number of order .
Cost at cater , C = 12.5x + 30 .
Cost at Good Eats , G = 15x .
We need to find :
G > C

Therefore, after 12th order cater will be more value for money.
Hence, this is the required solution.
Answer:
Yes because
Step-by-step explanation:
Is 3z-1 in standard form?
Yes becausestandard form of a polynomial, the value in the power of the variable such as z in the equation reduces from left to right. Therefore, 3z - 1 is in standard form since the z term comes to the left of the constant term
![\bf ~~~~~~~~~~~~\textit{distance between 2 points} \\\\ N(\stackrel{x_1}{-3}~,~\stackrel{y_1}{10})\qquad A(\stackrel{x_2}{6}~,~\stackrel{y_2}{3})\qquad \qquad d = \sqrt{( x_2- x_1)^2 + ( y_2- y_1)^2} \\\\\\ NA=\sqrt{(6+3)^2+(3-10)^2}\implies NA=\sqrt{130} \\\\[-0.35em] ~\dotfill\\\\ A(\stackrel{x_2}{6}~,~\stackrel{y_2}{3})\qquad D(\stackrel{x_1}{6}~,~\stackrel{y_1}{-1}) \\\\\\ AD=\sqrt{(6-6)^2+(-1-3)^2}\implies AD=4 \\\\[-0.35em] ~\dotfill](https://tex.z-dn.net/?f=%5Cbf%20~~~~~~~~~~~~%5Ctextit%7Bdistance%20between%202%20points%7D%20%5C%5C%5C%5C%20N%28%5Cstackrel%7Bx_1%7D%7B-3%7D~%2C~%5Cstackrel%7By_1%7D%7B10%7D%29%5Cqquad%20A%28%5Cstackrel%7Bx_2%7D%7B6%7D~%2C~%5Cstackrel%7By_2%7D%7B3%7D%29%5Cqquad%20%5Cqquad%20d%20%3D%20%5Csqrt%7B%28%20x_2-%20x_1%29%5E2%20%2B%20%28%20y_2-%20y_1%29%5E2%7D%20%5C%5C%5C%5C%5C%5C%20NA%3D%5Csqrt%7B%286%2B3%29%5E2%2B%283-10%29%5E2%7D%5Cimplies%20NA%3D%5Csqrt%7B130%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20A%28%5Cstackrel%7Bx_2%7D%7B6%7D~%2C~%5Cstackrel%7By_2%7D%7B3%7D%29%5Cqquad%20D%28%5Cstackrel%7Bx_1%7D%7B6%7D~%2C~%5Cstackrel%7By_1%7D%7B-1%7D%29%20%5C%5C%5C%5C%5C%5C%20AD%3D%5Csqrt%7B%286-6%29%5E2%2B%28-1-3%29%5E2%7D%5Cimplies%20AD%3D4%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill)

now that we know how long each one is, let's plug those in Heron's Area formula.
![\bf \qquad \textit{Heron's area formula} \\\\ A=\sqrt{s(s-a)(s-b)(s-c)}\qquad \begin{cases} s=\frac{a+b+c}{2}\\[-0.5em] \hrulefill\\ a=\sqrt{130}\\ b=4\\ c=\sqrt{202}\\[1em] s=\frac{\sqrt{130}+4+\sqrt{202}}{2}\\[1em] s\approx 14.81 \end{cases} \\\\\\ A=\sqrt{14.81(14.81-\sqrt{130})(14.81-4)(14.81-\sqrt{202})} \\\\\\ A=\sqrt{324}\implies A=18](https://tex.z-dn.net/?f=%5Cbf%20%5Cqquad%20%5Ctextit%7BHeron%27s%20area%20formula%7D%20%5C%5C%5C%5C%20A%3D%5Csqrt%7Bs%28s-a%29%28s-b%29%28s-c%29%7D%5Cqquad%20%5Cbegin%7Bcases%7D%20s%3D%5Cfrac%7Ba%2Bb%2Bc%7D%7B2%7D%5C%5C%5B-0.5em%5D%20%5Chrulefill%5C%5C%20a%3D%5Csqrt%7B130%7D%5C%5C%20b%3D4%5C%5C%20c%3D%5Csqrt%7B202%7D%5C%5C%5B1em%5D%20s%3D%5Cfrac%7B%5Csqrt%7B130%7D%2B4%2B%5Csqrt%7B202%7D%7D%7B2%7D%5C%5C%5B1em%5D%20s%5Capprox%2014.81%20%5Cend%7Bcases%7D%20%5C%5C%5C%5C%5C%5C%20A%3D%5Csqrt%7B14.81%2814.81-%5Csqrt%7B130%7D%29%2814.81-4%29%2814.81-%5Csqrt%7B202%7D%29%7D%20%5C%5C%5C%5C%5C%5C%20A%3D%5Csqrt%7B324%7D%5Cimplies%20A%3D18)