Answer:
![\large\boxed{Common\ factors:\ 1,\ 2,\ 4,\ a,\ 2a,\ 4a}](https://tex.z-dn.net/?f=%5Clarge%5Cboxed%7BCommon%5C%20factors%3A%5C%201%2C%5C%202%2C%5C%204%2C%5C%20a%2C%5C%202a%2C%5C%204a%7D)
Step-by-step explanation:
![16a=2\cdot2\cdot2\cdot2\cdot a\\Factors:\boxed1,\ \boxed2,\ \boxed4,\ 8,\ 16,\ \boxed{a},\ \boxed{2a},\ \boxed{4a},\ 8a,\ 16a\\\\20ab=2\cdot2\cdot5\cdot a\cdot b\\Factors:\boxed1,\ \boxed2,\ \boxed4,\ 5,\ 10,\ 20,\ \boxed{a},\ \boxed{2a},\ \boxed{4a},\ 5a,\ 10a,\ 20a,\\b,\ 2b,\ 4b,\ 5b,\ 10b,\ 20b,\ 2ab,\ 4ab,\ 5ab,\ 10ab,\ 20ab\\\\Common\ factors:\ 1,\ 2,\ 4,\ a,\ 2a,\ 4a](https://tex.z-dn.net/?f=16a%3D2%5Ccdot2%5Ccdot2%5Ccdot2%5Ccdot%20a%5C%5CFactors%3A%5Cboxed1%2C%5C%20%5Cboxed2%2C%5C%20%5Cboxed4%2C%5C%208%2C%5C%2016%2C%5C%20%5Cboxed%7Ba%7D%2C%5C%20%5Cboxed%7B2a%7D%2C%5C%20%5Cboxed%7B4a%7D%2C%5C%208a%2C%5C%2016a%5C%5C%5C%5C20ab%3D2%5Ccdot2%5Ccdot5%5Ccdot%20a%5Ccdot%20b%5C%5CFactors%3A%5Cboxed1%2C%5C%20%5Cboxed2%2C%5C%20%5Cboxed4%2C%5C%205%2C%5C%2010%2C%5C%2020%2C%5C%20%5Cboxed%7Ba%7D%2C%5C%20%5Cboxed%7B2a%7D%2C%5C%20%5Cboxed%7B4a%7D%2C%5C%205a%2C%5C%2010a%2C%5C%2020a%2C%5C%5Cb%2C%5C%202b%2C%5C%204b%2C%5C%205b%2C%5C%2010b%2C%5C%2020b%2C%5C%202ab%2C%5C%204ab%2C%5C%205ab%2C%5C%2010ab%2C%5C%2020ab%5C%5C%5C%5CCommon%5C%20factors%3A%5C%201%2C%5C%202%2C%5C%204%2C%5C%20a%2C%5C%202a%2C%5C%204a)
Answer: This is an reduction.
Step-by-step explanation:
- A dilation a king of transformation that creates an similar image (about a center of dilation) of the actual figure by changing its size with the use of a scale factor(k).
- It either shrinks or stretches the image.
- If |k| is greater than 1 then the image is an enlargement .
- If |k| is less than 1 then the image is an reduction.
- If |k| is equals to 1 then there is no change in size.
Given : A street is drawn by dilating segment
about center A with a scale factor greater than 0 but less than 1.
Then by using (2.) , we can say that this is an reduction.
Answer:
no it isn't linear equation
A linear equation is any equation that can be written in the form. ax+b=0. where a and b are real numbers and x is a variable. This form is sometimes called the standard form of a linear equation.
<em>Answer</em><em>:</em>
<h2>
<em>2</em><em>0</em><em> </em><em>years</em><em> </em><em>old</em><em>.</em></h2>
<em>Sol</em><em>ution</em><em>,</em>
<em>Let</em><em> </em><em>the</em><em> </em><em>age</em><em> </em><em>of</em><em> </em><em>sister</em><em> </em><em>be</em><em> </em><em>X</em>
<em>Let</em><em> </em><em>the</em><em> </em><em>age</em><em> </em><em>of</em><em> </em><em>boy</em><em> </em><em>be </em><em>2</em><em>x</em>
<em>Now</em><em>,</em>
<em>Five</em><em> </em><em>years</em><em> </em><em>ago</em><em>,</em>
<em>
</em>
<em>Again</em><em>,</em>
<em>Repla</em><em>cing</em><em> </em><em>value</em><em>,</em>
<em>
</em>
<em>hope</em><em> </em><em>this</em><em> </em><em>helps</em><em>.</em><em>.</em>
<em>Good</em><em> </em><em>luck</em><em> on</em><em> your</em><em> assignment</em><em>.</em><em>.</em>
Answer:
36 cups of Chex total.
Step-by-step explanation:
Well, he will obviously be using 12 cups of pretzels, so let's set that aside. For every cup of pretzels, there are 3 cups of chex. So, multiply 3x12. That will give you how much chex you will need.