Answer:
B. bradycardia
Explanation:
Bradycardia, also known as slow heart rate, is usually slower than 60 beats per minute.
Hope this helps! :)
Answer:
The correct answer is option D.
Explanation:
Dynamic equilibrium refers to the sense, which interprets angular acceleration in the three-axis of rotation that when combined provides a sense of equilibrium when movement takes place. The receptors for dynamic equilibrium are known as ampulla, maculae are the receptors of static equilibrium.
The movement of the head does stimulate dynamic equilibrium receptors, as these receptors are situated in the inner ear that moves with the head. The receptors for dynamic equilibrium are situated in the semicircular canals. The receptors for dynamic equilibrium react to rotational forces, as the receptors are located on the three-axis, thus, they can detect rotation, that is, angular momentum.
Answer: C). prolong the effect of epinephrine by maintaining elevated cAMP levels in the cytoplasm
Explanation: In the epinephrine pathway, binding of epinephrine to its receptor triggers a conformational change in the receptor and the interaction of the receptor with its associated Gs protein. This interaction causes the replacement of GDP bound to Gs protein with GTP thus activating the Gs protein. The activation of the Gs protein causes the alpha subunit of the Gs protein to dissociate and move to adenylyl cyclase, another membrane protein in the pathway. The association of the alpha subunit of the Gs protein with adenylyl cyclase activates adenylyl cyclase which in turn catalyzes the synthesis of cyclic AMP (cAMP) a second messenger. cAMP is quickly degraded to 5'-AMP by an enzyme phosphodiesterase. Inhibition of the activity of phosphodiesterase will increase the half life and the cytoplasmic level of cAMP thus potentiating the action of epinephrine.
<span>leukocytes would be the answer.
Hope this helps !
Photon</span>
10.6 + 19.0 = 29.6 would be the total amount