1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
alexandr1967 [171]
3 years ago
6

int t^2+1 \ dt" alt="\frac{d}{dx} \int t^2+1 \ dt" align="absmiddle" class="latex-formula">
There is a 2x on the bottom and x^2 on top of the integral symbol
Please help me my teacher did not teach us this:(
Mathematics
1 answer:
Kisachek [45]3 years ago
6 0

Answer:

\displaystyle{\frac{d}{dx} \int \limits_{2x}^{x^2}  t^2+1 \ \text{dt} \ = \ 2x^5-8x^2+2x-2

Step-by-step explanation:

\displaystyle{\frac{d}{dx} \int \limits_{2x}^{x^2}  t^2+1 \ \text{dt} = \ ?

We can use Part I of the Fundamental Theorem of Calculus:

  • \displaystyle\frac{d}{dx} \int\limits^x_a \text{f(t) dt = f(x)}

Since we have two functions as the limits of integration, we can use one of the properties of integrals; the additivity rule.

The Additivity Rule for Integrals states that:

  • \displaystyle\int\limits^b_a \text{f(t) dt} + \int\limits^c_b \text{f(t) dt} = \int\limits^c_a \text{f(t) dt}

We can use this backward and break the integral into two parts. We can use any number for "b", but I will use 0 since it tends to make calculations simpler.

  • \displaystyle \frac{d}{dx} \int\limits^0_{2x} t^2+1 \text{ dt} \ + \ \frac{d}{dx} \int\limits^{x^2}_0 t^2+1 \text{ dt}

We want the variable to be the top limit of integration, so we can use the Order of Integration Rule to rewrite this.

The Order of Integration Rule states that:

  • \displaystyle\int\limits^b_a \text{f(t) dt}\  = -\int\limits^a_b \text{f(t) dt}

We can use this rule to our advantage by flipping the limits of integration on the first integral and adding a negative sign.

  • \displaystyle \frac{d}{dx} -\int\limits^{2x}_{0} t^2+1 \text{ dt} \ + \ \frac{d}{dx}  \int\limits^{x^2}_0 t^2+1 \text{ dt}  

Now we can take the derivative of the integrals by using the Fundamental Theorem of Calculus.

When taking the derivative of an integral, we can follow this notation:

  • \displaystyle \frac{d}{dx} \int\limits^u_a \text{f(t) dt} = \text{f(u)} \cdot \frac{d}{dx} [u]
  • where u represents any function other than a variable

For the first term, replace \text{t} with 2x, and apply the chain rule to the function. Do the same for the second term; replace

  • \displaystyle-[(2x)^2+1] \cdot (2) \ + \ [(x^2)^2 + 1] \cdot (2x)  

Simplify the expression by distributing 2 and 2x inside their respective parentheses.

  • [-(8x^2 +2)] + (2x^5 + 2x)
  • -8x^2 -2 + 2x^5 + 2x

Rearrange the terms to be in order from the highest degree to the lowest degree.

  • \displaystyle2x^5-8x^2+2x-2

This is the derivative of the given integral, and thus the solution to the problem.

You might be interested in
PLEASE HELP WILL GIVE BRANILIEST
masya89 [10]

Answer:

It is a function because the x values don't repeat

Step-by-step explanation:

8 0
2 years ago
Si la amplitud del complemento de un ángulo agudo es mayor, menor o igual que la del suplemento de un ángulo agudo. ¿podes respo
Harrizon [31]

Answer:

Dados dos ángulos vecinos, ambos son complementarios si la suma de sus medidas es igual a 90° y suplementarios si esa suma de medidas es igual a 180°. Puesto que uno de los ángulos es el ángulo agudo mencionado en el enunciado, es decir, un ángulo cuya medida es mayor que 0° y menor que 90°. Entonces, el ángulo complementario debe ser inevitablemente menor que el ángulo suplementario.

Step-by-step explanation:

Dados dos ángulos vecinos, ambos son complementarios si la suma de sus medidas es igual a 90° y suplementarios si esa suma de medidas es igual a 180°. Puesto que uno de los ángulos es el ángulo agudo mencionado en el enunciado, es decir, un ángulo cuya medida es mayor que 0° y menor que 90°. Entonces, el ángulo complementario debe ser inevitablemente menor que el ángulo suplementario.

5 0
3 years ago
Graph the line giving one point and the slope. 2x-6y=12
koban [17]
Y = mx + c  

this is the equation of line and here m is the slope

so, 2x-6y =12   can be changed into standard format

y = 2x/6 - 12/6
y=x/3 +(-2)

so, m = 1/3   , so slope will be 1/3

hope it helped :)



8 0
3 years ago
Read 2 more answers
(
vredina [299]
A.would be 50 cents and im not entirely sure about b but i think its 8

5 0
3 years ago
Please help???? Geometry
Musya8 [376]
Any line can be expresses as:

y=mx+b where m=slope=(y2-y1)/(x2-x1) and b=y-intercept (value of y when x=0)

First find the slope:

m=(2-0)/(8-0)=2/8=1/4 so we have thus far:

y=0.25x+b, we solve for b using any point on the line, (8,2)

2=0.25(8)+b

2=2+b 

0=b

So the line is:

y=.25x  which they might also express as y=x/4

The answer is E. (1/4)x


6 0
3 years ago
Read 2 more answers
Other questions:
  • Johnathan plans on using 2" x 12" boards that cost $2.50 per foot. Assuming he can purchase the exact amount he needs, how much
    13·1 answer
  • A number n is no less than -3
    7·1 answer
  • Convert the fraction to higher terms. Enter the value of the missing numerator 3/10=?/80
    10·2 answers
  • There were 600 pieces of fruit in the fruit salad. Thirty-two percent were watermelon and were grapes. Is it reasonable to estim
    6·2 answers
  • How do I solve for e?<br> 9e+4=-5e+14+13e
    8·2 answers
  • Find the slope of the equations:
    13·1 answer
  • The solution of 4(x + 1) = 4(2 – x)
    11·2 answers
  • A division problem is shown below.
    5·1 answer
  • A painter is using a 8-foot ladder to paint a house. The painter places the ladder 6 feet from the house. How high up the wall d
    13·1 answer
  • Which statement is true about ∠1 and ∠2?
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!