Answer:
it wont load
Step-by-step explanation:
Answer:
exponential decay
Step-by-step explanation:
<h3>
Answer: -6, 7, -8</h3>
Start with the sequence {1, 2, 3, 4, 5, 6, 7, 8, ...}
Then change the sign of every other term so you'll have the first term positive, the second term negative, and so on.
That updates to {1, -2, 3, -4, 5, -6, 7, -8, ...}
Every odd term (1,3,5,..) is positive while every even term (-2,-4,-6) is negative.
Answer:
Step-by-step explanation:
2005 AMC 8 Problems/Problem 20
Problem
Alice and Bob play a game involving a circle whose circumference is divided by 12 equally-spaced points. The points are numbered clockwise, from 1 to 12. Both start on point 12. Alice moves clockwise and Bob, counterclockwise. In a turn of the game, Alice moves 5 points clockwise and Bob moves 9 points counterclockwise. The game ends when they stop on the same point. How many turns will this take?
$\textbf{(A)}\ 6\qquad\textbf{(B)}\ 8\qquad\textbf{(C)}\ 12\qquad\textbf{(D)}\ 14\qquad\textbf{(E)}\ 24$
Solution
Alice moves $5k$ steps and Bob moves $9k$ steps, where $k$ is the turn they are on. Alice and Bob coincide when the number of steps they move collectively, $14k$, is a multiple of $12$. Since this number must be a multiple of $12$, as stated in the previous sentence, $14$ has a factor $2$, $k$ must have a factor of $6$. The smallest number of turns that is a multiple of $6$ is $\boxed{\textbf{(A)}\ 6}$.
See Also
2005 AMC 8 (Problems • Answer Key • Resources)
Preceded by
Problem 19 Followed by
Problem 21
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25
All AJHSME/AMC 8 Problems and Solutions
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.
So,
We can notice that the graph of g, is translated 2 units to the left and 4 units up. We can express these changes with the following equation: