Answer:
La respuesta es falso.
Step-by-step explanation:
La respuesta es falso.
Cuando se suman fraccciones con igual denominador, se suman los numeradores (numerador con numerador) y se deja el mismo denominador (el cual es común en ambos). Por ejemplo, la suma de 1/5 + 3/5 da como resultado:
![\frac{1}{5} + \frac{3}{5} = \frac{1 + 3}{5} = \frac{4}{5}](https://tex.z-dn.net/?f=%20%5Cfrac%7B1%7D%7B5%7D%20%2B%20%5Cfrac%7B3%7D%7B5%7D%20%3D%20%5Cfrac%7B1%20%2B%203%7D%7B5%7D%20%3D%20%5Cfrac%7B4%7D%7B5%7D%20)
En el caso de fracciones con diferentes denominadores, tampoco se suma numerador con numerador y denominador con denominador. En ese caso se debe encontrar el mínimo común múltiplo.
Por lo tanto, la respuesta es falso.
Espero que te sea de utilidad!
If you would like to solve (n^3 - n^4) - (3n^3 - 7n^4), you can do this using the following steps:
(n^3 - n^4) - (3n^3 - 7n^4) = <span>n^3 - n^4 - 3n^3 + 7n^4 = n^3 - 3n^3 - n^4 + 7n^4 = -2n^3 + 6n^4
</span>
The correct result would be <span>-2n^3 + 6n^4.</span>
Answer:
Step-by-step explanation:
Let n be a random variable that represents the first Jonathan apple chosen at random that has bitter pit.
a) P(X = n) = q(n-1)p, where q = 1 - p.
From the information given, probability if success, p = 12.6/100 = 0.126
b) for n = 3, the probability value from the geometric probability distribution calculator is
P(n = 3) = 0.096
For n = 5, the probability value from the geometric probability distribution calculator is
P(n = 5) = 0.074
For n = 12, the probability value from the geometric probability distribution calculator is
P(n = 12) = 0.8
c) For n ≥ 5, the probability value from the geometric probability distribution calculator is
P(n ≥ 5) = 0.58
d) the expected number of apples that must be examined to find the first one with bitter pit is the mean.
Mean = 1/p
Mean = 1/0.126 = 7.9
Approximately 8 apples
Answer:
Option B. ![6.75\ cm^{2}](https://tex.z-dn.net/?f=6.75%5C%20cm%5E%7B2%7D)
Step-by-step explanation:
we know that
The area of a circle is equal to
![A=\pi r^{2}](https://tex.z-dn.net/?f=A%3D%5Cpi%20r%5E%7B2%7D)
we have
![r=3\ cm](https://tex.z-dn.net/?f=r%3D3%5C%20cm)
substitute
![A=\pi (3^{2})=9 \pi\ cm^{2}](https://tex.z-dn.net/?f=A%3D%5Cpi%20%283%5E%7B2%7D%29%3D9%20%5Cpi%5C%20cm%5E%7B2%7D)
Remember that
radians subtends the complete circle of area ![9 \pi\ cm^{2}](https://tex.z-dn.net/?f=9%20%5Cpi%5C%20cm%5E%7B2%7D)
so
by proportion
Find the area of the related sector for a central angle of
radians
Let
x------> the area of the related sector
![\frac{9 \pi}{2\pi}\frac{cm^{2}}{radians} =\frac{x}{1.5}\frac{cm^{2}}{radians}\\ \\x=9*1.5/2\\ \\x= 6.75\ cm^{2}](https://tex.z-dn.net/?f=%5Cfrac%7B9%20%5Cpi%7D%7B2%5Cpi%7D%5Cfrac%7Bcm%5E%7B2%7D%7D%7Bradians%7D%20%3D%5Cfrac%7Bx%7D%7B1.5%7D%5Cfrac%7Bcm%5E%7B2%7D%7D%7Bradians%7D%5C%5C%20%5C%5Cx%3D9%2A1.5%2F2%5C%5C%20%5C%5Cx%3D%206.75%5C%20cm%5E%7B2%7D)
A and c are true ! I hope this helps