Answer:
6.75
Step-by-step explanation:
First, I just gave you the answer.
Second, just use it.
Answer:
6
Step-by-step explanation:
Question: Given that BE bisects ∠CEA, which statements must be true? Select THREE options.
(See attachment below for the figure)
m∠CEA = 90°
m∠CEF = m∠CEA + m∠BEF
m∠CEB = 2(m∠CEA)
∠CEF is a straight angle.
∠AEF is a right angle.
Answer:
m∠CEA = 90°
∠CEF is a straight angle.
∠AEF is a right angle
Step-by-step explanation:
Line AE is perpendicular to line CF, which is a straight line. This creates two right angles, <CEA and <AEF.
Angle on a straight line = 180°. Therefore, m<CEA + m<AEF = m<CEF. Each right angle measures 90°.
Thus, the three statements that must be TRUE are:
m∠CEA = 90°
∠CEF is a straight angle.
∠AEF is a right angle
The equation of a circle is
(x-h)² + (y-k)² = r²
for center (h, k) and radius r. Of course, the radius can be computed by putting the point in the equation.
(x-2)² + (y-3)² = (-1-2)² + (1-3)² = 9+4 = 13
The standard equation of the circle is (x-2)² + (y-3)² = 13.
Answer:
length: 16 m; width: 13 m
Step-by-step explanation:
Write each of the statements as an equation. You know that the formula for the perimeter is ...
P = 2(L +W)
so one of your equations is this one with the value of P filled in:
• 2L + 2W = 58
The other equation expresses the relation between L and W:
• L = W +3 . . . . . . . . the length is 3 meters greater than the width
There are many ways to solve such a system of equations. Since you have an expression for L, it is convenient to substitute that into the first equation to get ...
2(W+3) +2W = 58
4W +6 = 58 . . . . . . . simplify
4W = 52 . . . . . . . . . . subtract 6
W = 13 . . . . . . . . . . . .divide by 4
We can use the expression for L to find its value:
L = 13 +3 = 16
The length is 16 meters; the width is 13 meters.