Answer:
A. 
Step-by-step explanation:
Hi there!
We are given right triangle PQR, with PR=5, RQ=12, and PQ=13
We want to find the value of sin(Q)
Let's first recall that sine is 
In reference to angle Q, PR is the opposite side, RQ is the adjacent side, and PQ is the hypotenuse
So that means that sin(Q) would be 
Substituting the values of PR and PQ gives sin(Q) as
, which is A
Hope this helps!
Answer:
its 20 inches
Step-by-step explanation:
General Idea:
When a point or figure on a coordinate plane is moved by sliding it to the right or left or up or down, the movement is called a translation.
Say a point P(x, y) moves up or down ' k ' units, then we can represent that transformation by adding or subtracting respectively 'k' unit to the y-coordinate of the point P.
In the same way if P(x, y) moves right or left ' h ' units, then we can represent that transformation by adding or subtracting respectively 'h' units to the x-coordinate.
P(x, y) becomes
. We need to use ' + ' sign for 'up' or 'right' translation and use ' - ' sign for ' down' or 'left' translation.
Applying the concept:
The point A of Pre-image is (0, 0). And the point A' of image after translation is (5, 2). We can notice that all the points from the pre-image moves 'UP' 2 units and 'RIGHT' 5 units.
Conclusion:
The transformation that maps ABCD onto its image is translation given by (x + 5, y + 2),
In other words, we can say ABCD is translated 5 units RIGHT and 2 units UP to get to A'B'C'D'.