Answer:
0.01863, yes preference
Step-by-step explanation:
given that a class consists of 12 boys and 12 girls. The teacher picks five students to present their work to the rest of the class and says that the five students are being selected at random
Here selecting any 5 students from the group of total 24 students is combination because order does not matter.
Total no of ways of selecting any 5 from total 24 =
No of ways of selecting only 5 girls = No of ways of selecting random 5 girls from total 12 girls
=
a) the probability be that all five students
selected are girls=
b) Since the probability for selecting all girls is very small and near to 0, it is unusual to select all girls if done at random. Hence the teacher had a preference for girls.
Answer:
J
Step-by-step explanation:
If you were to plug in your variables, you would see that -6, and -7 is over 25 and the rest of your variables aren't. So, therefore your answer is J.
With the help of the <em>area</em> formulae of rectangles and triangles and the concept of <em>surface</em> area, the <em>surface</em> area of the composite figure is equal to 276 square centimeters.
<h3>What is the surface area of a truncated prism?</h3>
The <em>surface</em> area of the <em>truncated</em> prism is the sum of the areas of its six faces, which are combinations of the areas of rectangles and <em>right</em> triangles. Then, we proceed to determine the <em>surface</em> area:
A = (12 cm) · (4 cm) + 2 · (3 cm) · (4 cm) + 2 · (12 cm) · (3 cm) + 2 · 0.5 · (12 cm) · (5 cm) + (5 cm) · (4 cm) + (13 cm) · (4 cm)
A = 48 cm² + 24 cm² + 72 cm² + 60 cm² + 20 cm² + 52 cm²
A = 276 cm²
With the help of the <em>area</em> formulae of rectangles and triangles and the concept of <em>surface</em> area, the <em>surface</em> area of the composite figure is equal to 276 square centimeters.
To learn more on surface areas: brainly.com/question/2835293
#SPJ1
Answer:
46 housewives read all three magazines.
Step-by-step explanation:
Given:
n(A) = 150
n(B) = 200
n(C) = 156
n(A∩B) = 48
n(B∩C) = 60
n(A∩C) = 52
n(A∪B∪C) = 300
so we know the relation as:
n(A∪B∪C) = n(A) + n(B) + n(C) - n(A∩B) - n(B∩C) - n(A∩C) + n(A∩B∩C)
∴ n(A∩B∩C) = n(A) + n(B) + n(C) - n(A∩B) - n(B∩C) - n(A∩C) - n(A∪B∪C)
= 150 + 200+ 156 - 48 - 60 - 52 - 300
= 46
Hence the number of housewives that had read all three magazine is 46.