
prove that √p is an irrational number , if p is not a perfect square.

Let us assume, to the contrary, that √p is rational. So, we can find coprime integers a and b(b ≠ 0) such that :-
=> √p = a/b
=> √p b = a
=> pb² = a² ….(i) [Squaring both the sides]
=> a² is divisible by p
=> a is divisible by p So, we can write a = pc for some integer c.
Therefore,
a² = p²c² ….[Squaring both the sides]
=> pb² = p²c² ….[From (i)]
=> b² = pc²
=> b² is divisible by p
=> b is divisible by p
=> p divides both a and b.
=> a and b have at least p as a common factor.
But this contradicts the fact that a and b are coprime. This contradiction arises because we have assumed that √p is rational. Therefore, √p is irrational.
_____________________________________

________________________________
Answer:
b
Step-by-step explanation:
h
Answer=36*y
36 inches in 1 yard
36in=1yd
36*y
First, let's complete the angles in the triangle. Remember that the sum of the angles in a triangle is 180 degrees.
73 + 90 + x = 180
163 + x = 180
x = 17
So, the angle that completes the triangle is 17 degrees. If we look at that angle in the triangle and the one adjacent to it, we can see that those two angles form a linear pair (or are supplementary, both meaning that they add up to 180 degrees).
17 + x = 180
x = 163
So, 17's supplement is 163 degrees. The 163 degree angle corresponds with angle r, and corresponding angles are congruent.
Therefore, angle r is 163 degrees. The correct answer is option C.
Hope this helps!