Answer: Read Sol.
Step-by-step explanation: To solve these, call each given zero = z. The function is when given a zero that is an integer (x-z1)(x-z2)(x-z3)... so on until all zeroes are used. This works for fractions also. But when you have irrationals, you will have to make sure each irrational solutions conjugate is there. So if a given zero is 2-sqrt3, then always 2+sqrt3 will also be a 0. Likewise, if given -4-sqrt7, then -4+sqrt7 will also always be a zero. Use this logic to solve them very quickly! I hope this helps!
This reduced fraction would be c. x+y/8.
You can apply the Difference of Two Squares Formula (x^2+y^2)=(x+y)(x-y). Then, you can factor out the common term 8 and cancel out the common factor x-y. Hope this helps! :)
Range, from -inf to 4
4 >= f(x) > - inf B
Answer:
an Injective function is a function that maps distinct elements of its domain to distinct elements of its codomain. In other words, every element of the function's codomain is the image of at most one element of its domain.
Step-by-step explanation: