Answer: The pressure in the can is 4.0 atm
Explanation:
According to ideal gas equation:
P = pressure of gas = ?
V = Volume of gas = 0.410 L
n = number of moles =
R = gas constant =
T =temperature =
Thus the pressure in the can is 4.0 atm
Because they are farther across the periodic table<span />
The rate law for this reaction is [A]².
Balanced chemical reaction used in this experiment: A + B → P
The reaction rate is the speed at which reactants are converted into products.
Comparing first and second experiment, there is no change in initial rate. The concentration of reactant B is increased by double. Initial rate does not depands on concentration of reactant B.
Comparing first and third experiment, initial rate is nine times greater, while concentration of reactant A is three times greater. Conclusion is that concentration of reactant A is squared and the rate is [A]².
More info about rate law: brainly.com/question/16981791
#SPJ4
Answer:
I'm pretty sure its solid
Robert Boyle, the 17th century British chemist, first noticed that the volume of a given amount of gas is inversely proportional to its pressure when kept at a constant temperature. When working with ideal gases we use PV = nRT, but remember n, R, and T are all constant. Therefore we have:
PV(before) = PV(after)
P(0.5650) = (715.1)(1.204)