Answer:
5 moles of NO₂ will remain after the reaction is complete
Explanation:
We state the reaction:
3NO₂(g) + H₂O(l) → 2HNO₃(l) + NO(g)
3 moles of nitric oxide can react with 1 mol of water. Ratio is 3:1, so we make this rule of three:
If 3 moles of nitric oxide need 1 mol of water to react
Then, 26 moles of NO₂ may need (26 .1) / 3 = 8.67 moles of H₂O
We have 7 moles of water but we need 8.67 moles, so water is the limiting reactant because we do not have enough. In conclusion, the oxide is the reagent in excess. We can verify:
1 mol of water needs 3 moles of oxide to react
Therefore, 7 moles of water will need (7 .3)/1 = 21 moles of oxide
We have 26 moles of NO₂ and we need 21, so we still have oxide after the reaction is complete. We will have (26-21) = 5 moles of oxide that remains
Because the concentration of molecules in the gas phase increases with increasing pressure, the concentration of dissolved gas molecules in the solution at equilibrium is also higher at higher pressures
<span>250 ml * 1.25 g/ml * 3.74 j/g-K * 9.2 K = 10.752 kJ
Pretty much, all you need to do here is multiply all of these out to get your final answer. Not all questions are this easy, but this is certainly one of them.</span>
Answer:
Fluorine
Explanation:
It is a non-metal does not conduct electricity
Answer:
Explanation:
412 ATP's will be generated from the complete metabolic oxidation of tripalmitin (tripalmitoylglycerol)
130 ATP from the oxidation of palmitate
22 ATP from the oxidation of glycerol
Altogether 130 + 22 = 412 ATP will be produced.
Here in case of tripalmitin (tripalmitoylglycerol), we have 51 carbons.
When 51 carbons can produce 412 ATPs
Then 1 carbon will produce how many ATPs = 412 ATPs/ 51 carbon= 8.1 ATPs.
This shows that ATP yield per carbon often oxidized will be 8.1 ATPs
Now we will see the ATP yield in the case of glucose.
Glucose is made up of 6 carbon and complete oxidation of glucose will produce 38 ATPs
When 6 carbons can yield 38 ATPs
Then 1 carbon can yield how many ATPs= 38 ATPs/ 6 carbons= 6.33 ATPs.
So, ATP yield per carbon in case of glucose will be 6.33 ATPs