Answer to this is O-atom.
Explanation: The Bronsted acid-base theory is the backbone of chemistry. This theory focuses mainly on acids and bases acting as proton donors or proton acceptors.
where
is the Lewis Acid and
is the Lewis Base and
is the Covalent Bond.
Reaction of dissociation of
in
is given as:

In this reaction O-atom has lone pair in water and therefore it accepts the proton from
forming a Lewis Base.
The particles that make up the atomic nucleus of all atoms are both protons and neutrons.
D, because C12 means there's 12 atoms of carbon.
Answer:
1. d[H₂O₂]/dt = -6.6 × 10⁻³ mol·L⁻¹s⁻¹; d[H₂O]/dt = 6.6 × 10⁻³ mol·L⁻¹s⁻¹
2. 0.58 mol
Explanation:
1.Given ΔO₂/Δt…
2H₂O₂ ⟶ 2H₂O + O₂
-½d[H₂O₂]/dt = +½d[H₂O]/dt = d[O₂]/dt
d[H₂O₂]/dt = -2d[O₂]/dt = -2 × 3.3 × 10⁻³ mol·L⁻¹s⁻¹ = -6.6 × 10⁻³mol·L⁻¹s⁻¹
d[H₂O]/dt = 2d[O₂]/dt = 2 × 3.3 × 10⁻³ mol·L⁻¹s⁻¹ = 6.6 × 10⁻³mol·L⁻¹s⁻¹
2. Moles of O₂
(a) Initial moles of H₂O₂

(b) Final moles of H₂O₂
The concentration of H₂O₂ has dropped to 0.22 mol·L⁻¹.

(c) Moles of H₂O₂ reacted
Moles reacted = 1.5 mol - 0.33 mol = 1.17 mol
(d) Moles of O₂ formed

First, let's write the givens in the form of a chemical equation:
3A + B ...................> 4X + 2Y
Now we find that this equation implies the following:
For every 4X and 2Y formation, 3A and 1B must disappear (react).
Comparing this implication to the above choices, we find that the right answer is: <span>The rate of formation of X is four times the rate of disappearance of B.</span>