Some patterns and trend that are present in the periodic table would be
1. electronegativity (from left-to-right it increases across the table)
2. ionization (from left-to right it increases and from bottom-to-top it increases)
3. electron affinity (same as ionization energy)
4. atom radius (increases opposite way; from right-to-left it increases and from top-to-bottom it increases)
5. melting point (higher melting points with metals and lower melting point with non-metals)
6. metallic character (same as atom radius)
Answer:
1116 g.
Explanation:
The balanced equation for the reaction is given below:
4Na + O₂ —> 2Na₂O
From the balanced equation above,
1 mole of O₂ reacted to produce 2 moles of Na₂O.
Next, we shall determine the theoretical yield of Na₂O. This can be obtained as follow:
From the balanced equation above,
1 mole of O₂ reacted to produce 2 moles of Na₂O.
Therefore, 9 moles of O₂ will react to produce = 9 × 2 = 18 moles of Na₂O.
Finally, we shall determine the mass in 18 moles of Na₂O. This can be obtained as follow:
Mole of Na₂O = 18 moles
Molar mass of Na₂O = (23×2) + 16
= 46 + 16
= 62 g/mol
Mass of Na₂O =?
Mass = mole × molar mass
Mass of Na₂O = 18 × 62
Mass of Na₂O = 1116 g
Thus, the theoretical yield of Na₂O is 1116 g.
Answer:
1 ) 0.274 mol N2
2 ) 5.847 mol KNO3
yea... im just gonna do two fo them, i think u can figure it out from there
Explanation:
Answer:
36.8 L
Explanation:
We'll begin by converting 80 °C to Kelvin temperature. This can be obtained as follow:
T(K) = T(°C) + 273
T(°C) = 80 °C
T(K) = 80 + 273
T(K) = 353 K
Finally, we shall determine the volume occupied by the helium gas. This can be obtained as follow:
Number of mole (n) = 1.27 moles
Temperature (T) = 353 K
Pressure (P) = 1 atm
Gas constant (R) = 0.0821 atm.L/Kmol
Volume (V) =?
PV = nRT
1 × V = 1.27 × 0.0821 × 353
V = 36.8 L
Thus, the volume occupied by the helium gas is 36.8 L
Answer:
The volume of the liquid should be measured before it is heated.
Explanation:
Because During an experiment to test how a variable changes a substance, it is important to first observe and record the characteristics of the substance before the variable is introduced. In this case, the variable is heat energy.