The amount of substance present in a certain object with a given half-life in terms of h can be expressed through the equation,
A(t) = (A(o))(0.5)^(t/h)
where A(t) is the amount of substance after t years and A(o) is the original amount. In this item we are given that A(t)/A(o) is equal to 0.89. Substituting the known values,
0.89 = (0.5)(t / 5730 years)
The value of t from the equation is 963.34 years.
<em>Answer: 963 years</em>
The variable that is measured as data in an experiment is 1. the dependent variable.
The variables that are held constant in an experiment are 2. the controlled variables.
The variable that is changed by the experimenter is 5. the independent variable.
A count or measurement recorded during an experiment is 4. quantitative data.
Descriptions or observations during an experiment are 3. qualitative data.
Answer : The work, heat during the process and the change of entropy of the gas are, 0 J, 3333.003 J and -10 J respectively.
Explanation :
(a) At constant volume condition the entropy change of the gas is:

We know that,
The relation between the
for an ideal gas are :

As we are given :



Now we have to calculate the entropy change of the gas.


(b) As we know that, the work done for isochoric (constant volume) is equal to zero. 
(C) Heat during the process will be,

Therefore, the work, heat during the process and the change of entropy of the gas are, 0 J, 3333.003 J and -10 J respectively.
Answer:
24.9%
Explanation:
According to this question, mole fraction of NaCl in an aqueous solution is 0.0927. This means that the mole percent of NaCl in the solution is:
0.0927 × 100 = 9.27%
Let's assume that the solution contains water (solvent) + NaCl (solute), hence, the mole fraction of water will be;
100% - 9.27% = 90.73%
THEREFORE, it can be said that, NaCl contains 0.0927moles while H2O contains 9.073moles
N.B: mole = mass/molar mass
Given the Molar Mass
NaCl: 58.44 g/mol
H2O: 18.016 g/mol
For NaCl;
0.0927 = mass/58.44
mass = 0.0927 × 58.44
5.42g
For H2O;
9.073 = mass/18.016
mass = 9.073 × 18.016
= 16.35g
Total mass of solution = 16.35g + 5.42g = 21.77g
Mass percent of NaCl = mass of NaCl/total mass × 100
% mass of NaCl = 5.42g/21.77g × 100
= 0.249 × 100
= 24.9%
Answer:
Various limitations of Mendeleev's periodic table are:-
Position of hydrogen - he couldn't assign a correct position to hydrogen as it showed properties of both alkali and halogens .
Position of isotopes - he considered that the properties of elements are a function of their atomic masses. Hence isotopes of a same element couldn't be placed.
In the d-block , elements with lower atomic number were placed before higher atomic number.
Explanation: