The axial field is the integration of the field from each element of charge around the ring. Because of symmetry, the field is only in the direction of the axis. The field from an element ds in the ring is
<span>dE = (qs*ds)cos(T)/(4*pi*e0)*(x^2 + R^2) </span>
<span>where x is the distance along the axis from the plane of the ring, R is the radius of the ring, qs is the linear charge density, T is the angle of the field from the x-axis. </span>
<span>However, cos(T) = x/sqrt(x^2 + R^2) </span>
<span>so the equation becomes </span>
<span>dE = (qs*ds)*[x/sqrt(x^2 + R^2)]/(4*pi*e0)*(x^2 + R^2) </span>
<span>dE =[qs*ds/(4*pi*e0)]*x/(x^2 + R^2)^1.5 </span>
<span>Integrating around the ring you get </span>
<span>E = (2*pi*R/4*pi*e0)*x/(x^2 + R^2)^1.5 </span>
<span>E = (R/2*e0)*x*(x^2 + R^2)^-1.5 </span>
<span>we differentiate wrt x, the term R/2*e0 is a constant K, and the derivative is </span>
<span>dE/dx = K*{(x^2 + R^2)^-1.5 +x*[(-1.5)*(x^2 + R^2)^-2.5]*2x} </span>
<span>dE/dx = K*{(x^2 + R^2)^-1.5 - 3*x^2*(x^2 + R^2)^-2.5} </span>
<span>to find the maxima set this = 0, giving </span>
<span>(x^2 + R^2)^-1.5 - 3*x^2*(x^2 + R^2)^-2.5 = 0 </span>
<span>mult both side by (x^2 + R^2)^2.5 to get </span>
<span>(x^2 + R^2) - 3*x^2 = 0 </span>
<span>-2*x^2 + R^2 = 0 </span>
<span>-2*x^2 = -R^2 </span>
<span>x = (+/-)R/sqrt(2) </span>
Answer:
B is correct. Electrons are added to the rod.
Explanation:
Because the fur lose electrons to the rode and because positively charged while the rod because negative
Answer:
<em>the</em><em> </em><em>correct</em><em> </em><em>answer</em><em> </em><em>is</em>
Explanation:
<em>The</em><em> </em><em>small</em><em> </em><em>intestine</em><em> </em><em>absorbs</em><em> </em><em>most</em><em> </em><em>of</em><em> </em><em>the</em><em> </em><em>nutrients</em><em> </em><em>in</em><em> </em><em>your</em><em> </em><em>food</em><em>,</em><em>an</em><em>d</em><em> </em><em>you</em><em>r</em><em> </em><em>circulatory</em><em> </em><em>system</em><em> </em><em>passes</em><em> </em><em>them</em><em> </em><em>on</em><em> </em><em>to</em><em> </em><em>other</em><em> </em><em>parts</em><em> </em><em>of</em><em> </em><em>your</em><em> </em><em>body</em><em> </em><em>to</em><em> </em><em>store</em><em> </em><em>or</em><em> </em><em>use.</em><em> </em><em>Special</em><em> </em><em>cell</em><em>s</em><em> </em><em>helped</em><em> </em><em>absorbed</em><em> </em><em>nutrients</em><em> </em><em>cross</em><em> </em><em>the</em><em> </em><em> </em><em>intestinal</em><em> </em><em>lining</em><em> </em><em> </em><em>into</em><em> </em><em>your</em><em> </em><em>blood</em><em> </em><em>stream</em><em>.</em>
<em><u>hope</u></em><em><u> </u></em><em><u>this</u></em><em><u> </u></em><em><u>works</u></em><em><u> </u></em><em><u>out</u></em><em><u>!</u></em><em><u>!</u></em><em><u>!</u></em><em><u>!</u></em>
Cartography (the making of maps and charts) is a science because it is a body of knowledge which can be used, built on, and can produce testable hypotheses.
The cartography of India begins with early charts for navigation and constructional plans for buildings. Indian traditions influenced Tibetan and Islamic traditions, and in turn, were influenced by the British cartographers who solidified modern concepts into India's map making