1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Sergeeva-Olga [200]
3 years ago
14

As a rocket is launched, the net force on it stays constant even though the mass decreases (in the form of rocket fuel being con

sumed). By using Newton's second law of motion, explain what happens to the acceleration and why.
Physics
1 answer:
Rus_ich [418]3 years ago
8 0

Answer:

 'acceleration will increase.'

Explanation:

We know that force on the rocket is given as follows

F=m\dfrac{dv}{dt}

m=mass

v=velocity

t=time

F=force

F=m\dfrac{dv}{dt}

F= m a

a=acceleration

a=\dfrac{F}{m}

If the mass m decreases then the acceleration of the rocket will increase.

Therefore we can say that if the mass m decreases then the acceleration a will increases to maintain the constant force F.

The answer will be  'acceleration will increase.'

You might be interested in
What is the smallest radius of an unbanked (flat) track around which a bicyclist can travel if her speed is 22 km/h and the coef
Aleks [24]
First, let's put 22 km/h in m/s:

22 \frac{km}{h} \times  \frac{1000m}{1km}  \times  \frac{1h}{3600s}=6.11 \frac{m}{s}

Now the radial force required to keep an object of mass m, moving in circular motion around a radius R, is given by

F_{rad}=m \frac{v^2}{R}

The force of friction is given by the normal force (here, just the weight, mg) times the static coefficient of friction:

F_{fric}= mg \mu_{s}

Notice we don't use the kinetic coefficient even though the bike is moving.  This is because when the tires meet the road they are momentarily stationary with the road surface.  Otherwise the bike is skidding.

Now set these equal, since friction is the only thing providing the ability to accelerate (turn) without skidding off the road in a line tangent to the curve:

m\frac{v^2}{R} = mg \mu_{s} \\ \\ \frac{v^2}{R} = g \mu_{s} \\ \\R= \frac{v^2}{g \mu_{s}} \\ \\ R= \frac{6.11}{9.8 \times 0.37}=1.685m

3 0
3 years ago
One end of a 7-cm-long spring is attached to the ceiling. When a 5.4 kg mass is hung from the other end, the spring is stretched
mash [69]

Answer:

2.63 cm

Explanation:

Hooke's law gives that the force F is equal to cy where c is spring constant and x is extension

Making c the subject of the formula then

c=\frac {F}{y}

Since F is gm but taking the given mass to be F

c=\frac {5.4 kg}{4.3 cm}=1.2558139534883720930232558139534883720930

By substitution now considering F to be 3.3 kg

y=\frac {3.3 kg}{1.2558139534883720930232558139534883720930}=2.6277777777777 cm\approx 2.63 cm

8 0
3 years ago
30 POINTS!!! CAN U AWNSER IT?? :)
solniwko [45]

Answer:

5235.84 kg

Explanation:

There is one theorem - whose proof I will never remember without having to drag calculus in there - that says that the variation of momentum is equal to the force applied times the time the application last.

F\Delta t = m \Delta v As long as the engine isn't ejecting mass - at this point it's a whole new can of worm - we know the force, we know the variation in speed, time to find the mass. But first, let's convert the variation of speed in meters per second. The ship gains 250 kmh, \Delta v = 69.4 m/s;

45 450 \cdot 8 = 69.4 m \rightarrow m = \frac{45450\cdot 8}{69.4} = 5235.84 kg

7 0
3 years ago
An apparatus like the one Cavendish used to find G has large lead balls that are 5.2 kg in mass and small ones that are 0.046 kg.
Ber [7]

Answer:

The magnitude of gravitational force between two masses is 4.91\times 10^{-9}\ N.

Explanation:

Given that,

Mass of first lead ball, m_1=5.2\ kg

Mass of the other lead ball, m_2=0.046\ kg

The center of a large ball is separated by 0.057 m from the center of a small ball, r = 0.057 m

We need to find the magnitude of the gravitational force between the masses. It is given by the formula of the gravitational force. It is given by :

F=G\dfrac{m_1m_2}{r^2}\\\\F=6.67259\times 10^{-11}\times \dfrac{5.2\times 0.046}{(0.057)^2}\\\\F=4.91\times 10^{-9}\ N

So, the magnitude of gravitational force between two masses is 4.91\times 10^{-9}\ N. Hence, this is the required solution.

5 0
3 years ago
1 (3 points)
trapecia [35]

Answer:

300

Explanation:

15x20

5 0
4 years ago
Other questions:
  • A balloon has a volume of 10,500 liters, and the temperature is 15°C. If the temperature were -25°C, what would the volume of th
    9·1 answer
  • If you could visit Pangaea, what animals would you most likely find there?
    8·2 answers
  • A charge of 6.4x 10^-7 c experiences an electric force of 1.8 x10^-1 N. What is the electric field strength ?
    14·1 answer
  • Review 1: A plane is located x = 40 miles (horizontally) away from an airport at an altitude of h miles. Radar at the airport de
    6·1 answer
  • Which of the following is a declarative sentence
    5·2 answers
  • This means divide or to take apart the pieces. ( science )
    14·1 answer
  • Acceleration is a change in speed or direction over time. In what two ways does the sled accelerate as it descends?
    10·1 answer
  • PLZ HELP
    9·1 answer
  • A cat chases a mouse until the cat gets tired. A graph of the cat's velocity over time is shown below. Velocity 8+ 6+ 9+ 2 Time
    12·2 answers
  • Two lightbulbs work on a 120-V circuit One 50 W and the other is 100 W. Which bulb has a higher resistance? Explain pls!!!!
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!