Answer:
a) E = σ / 2 ε₀ =
Q / 2A ε₀, b) E = 2Q/A ε₀
Explanation:
For this exercise we can use Gauss's Law
Ф = E. dA =
/ ε₀
Let us define a Gaussian surface as a cylinder with the base parallel to the plane. In this case, the walls of the cylinder and the charged plate have 90 degrees whereby the scalar product is zero, the normal vector at the base of the cylinder and the plate has zero degrees whereby the product is reduced to the algebraic product
Φ = E dA = q_{int} / ε₀ (1)
As they indicate that the plate has an area A, we can use the concept of surface charge density
σ = Q / A
Q = σ A
The flow is to both sides of loaded plate
Φ = 2 E A
Let's replace in equation 1
2E A = σA / ε₀
E = σ / 2 ε₀ =
Q / 2A ε₀
This is in the field at point P.
b) Now we have two plates each with a load Q and 3Q respectively and they ask for the field between them
The electric field is a vector quantity
E = E₁ + E₂
In the gap between the plates the two fields point in the same direction whereby they add
σ₁ = Q / A
E₁ = σ₁ / 2 ε₀
For the plate 2
σ₂ = -3Q / A = -3 σ₁
E₂ = σ₂ / 2 ε₀
E₂ = -3 σ₁ / 2 ε₀
The total field is
E = σ₁ / 2 ε₀ + 3 σ₁ / 2 ε₀
E = σ₁ / 2 ε₀ (1+ 3)
E = 2 σ₁ / ε₀
E = 2Q/A ε₀
Answer:
1. friends getting you to study
2. leading you to make the right decision
3. giving you advice pushing you towards whats right
4. pressuring you to be a good person
5. telling you when in the wrong
Explanation:
all of these are ways of positive peer pressure
Answer:a lid
Explanation bob pulled the lid off the jar of pickles
The Earth's radius is 6371 km. So that's our distance from the center when we're on the surface.
The Shuttle astronaut's distance from the center, when s/he's in orbit, is 330 km greater ... that's 6701 km.
The force of gravity is inversely proportional to the distance between the center of the Earth and the center of the astronaut. So, in orbit, it's
(6371/6701)^2 = 90.4 %
of its value on the surface.