Answer:
The turns of a graph is represented by the number of maximum or minimum that the function has.
If we differenciate f(x) we get:
f'(x)=4x^3+6x
f'(x)=2x(2x^2 + 3)
Therefore f'(x) =0, when x=0. Given that negative roots are not defined.
Therefore, the number of turns will be given by the number of solutions of f'(x) which is 1.
Attached you find the graph of the function which confirms the number of turns.
If the function had other solutions, the maximum number of turns it could have is 3! because f'(x) is a third degree polynomial, therefore it can't have more than 3 solutions!
Answer: i thinks it's D. none of the above because they are all angles?
Step-by-step explanation:
To find this, first find the factor or rate of which the numbers are moving. To do so do as follows.
subtract 1 from 3
3-1=2
So each number is having 2 added to it.
Now add two to 7 and the numbers afterwards till you get the 12th term
7+2=9
1+3+5+7+9
9+2=11
1+3+5+7+9+11
11+2=13
1+3+5+7+9+11+13
13+2=15
1+3+5+7+9+11+13+15
15+2=17
1+3+5+7+9+11+13+15+17
17+2=19
1+3+5+7+9+11+13+15+17+19
19+2=21
1+3+5+7+9+11+13+15+17+19+21
21+2=23
1+3+5+7+9+11+13+15+17+19+21+23
So 23 is the 12th term

Compare to standard equation of SHM

Here


Well the above one are for extra knowledge .
Solution:-







So.

Solve your equation step-by-step.
x2+4x+4=0
Factor left side of equation.
(x+2)(x+2)=0
Set factors equal to 0.
x+2=0
or
x+2=0
x=−2