I=k/d^2
4=k/d^2 and 1=k/64 so if we divide the first by the second we get:
4/1=(k/d^2)/(k/64)
4=(k/d^2)*(64/k)
4=64/d^2
d^2=64/4
d^2=16
d=4 meters
Find numbers that multiply to 28 and add them to see if they add to 8
28=
1 and 28=29 not 8
2 and 14=16 not 8
4 and 7=11 not 8
that's it'
no 2 numbers
we must use quadratic formula
x+y=8
xy=28
x+y=8
subtract x fromb oths ides
y=8-x
subsitute
x(8-x)=28
distribute
8x-x^2=28
add x^2 to both sides
8x=28+x^2
subtract 8x
x^2-8x+28=0
if you have
ax^2+bx+c=0 then x=

so if we have
1x^2-8+28=0 then
a=1
b=-8
c=28
x=

x=

x=

x=

x=

there are no real numbers that satisfy this
We don't need the figure
angle b = 44 degrees
angle a = 62 degrees
angle e = 50 degrees
angle f = unknown
we know that
angle a + b + e + f = 180 degrees
50 + 44 + 62 + f =180 degrees
f= 180-50-44-62
but here there is only one blank so we have to add 44 and 62 to make one number that is 106
therefore, f = 180-50-106
if you further want to solve it angle f is 24
Answer:
C
Step-by-step explanation: