Equation of a line:

m = gradient: The difference between two y points and two x points.

c = y-intercept: Where the line crosses the y-axis (x=0)
You have:

so you are missing the m and the c.
To calculate m find two y coordinates -you have (12,
<u>7</u>) and (0, <u>
1</u>)- and subtract them. Then divide this by the subtracted values of the x coordinates -you have (<u>
12</u>, 7) and (<u>
0</u>, 1)- This gives:



To calculate the c, you just see where the line crosses the y-axis. Because you have the point (0, 1), you know that when x=0, y=1. Because x=0 is on the y-axis, you can tell that the line passes through y=1. This makes your c = 1:

When you plug these values into the equation you get your answer:
By graphing both equations, we see that the solutions of the system of equations are (1.05, 4.05) and (-4.97, - 1.97)
<h3>
How to solve the system of equations?</h3>
Here we have the system of equations:
y = x + 3
y = 13*(x + 5)*(x - 1).
To solve this system graphically, we need to graph both equations and see where the curves intercept.
The graph of the two equations can be seen below.
There are two solutions, one is (1.05, 4.05) and the other is (-4.97, - 1.97)
If you want to learn more about systems of equations:
brainly.com/question/13729904
#SPJ1
Answer:
the answer to the question is 8
Answer:
The solutions are x = 1.24 and x = -3.24
Step-by-step explanation:
Hi there!
First, let´s write the equation:
log[(x² + 2x -3)⁴] = 0
Apply the logarithm property: log(xᵃ) = a log(x)
4 log[(x² + 2x -3)⁴] = 0
Divide by 4 both sides
log(x² + 2x -3) = 0
if log(x² + 2x -3) = 0, then x² + 2x -3 = 1 because only log 1 = 0
x² + 2x -3 = 1
Subtract 1 at both sides of the equation
x² + 2x -4 = 0
Using the quadratic formula let´s solve this quadratic equation:
a = 1
b = 2
c = -4
x = [-b± √(b² - 4ac)]/2a
x = [-2 + √(4 - 4(-4)·1)]/2 = 1.24
and
x = [-2 - √(4 - 4(-4)·1)]/2 = -3.24
The solutions are x = 1.24 and x = -3.24
Have a nice day!
Answer:
3pi is irrational.
Step-by-step explanation:
An irrational number multiplied by a rational number is always irrational.
:)