Answer: 3rd one
Rearrange the original equation so it fits the model of : ax^2+bx+c=0
Then use the quadratic formula to find all possible answers.
Answer:
The area of the clock 
Step-by-step explanation:
We have been given the face of the clock that is 
So that is also the circumference of the clock.
Since the clock is circular in shape.
So 
From here we will calculate the value of radius
of the clock that is circular in shape.
Then 
Now to find the area of the clock we will put this value of (r) in the equation of area of the circle.
Now 
So the area of the face of the clock =
Answer:
I III and IV
Step-by-step explanation:
Answer:
-I haven't done this, but I have copied and pasted from another question and answer from the user syed514:
Graphing is one way to do the problem.But sometimes, graphing it is hard to do.So here’s an algebraic method.
If M(m1, m2) is the midpoint of two points A(x1, y1) and B(x2, y2),then m1 = (x1 + x2)/2 and m2 = (y1 + y2)/2.In other words, the x-coordinate of the midpointis the average of the x-coordinates of the two points,and the y-coordinate of the midpointis the average of the y-coordinates of the two points.
Let B have coordinates (x2, y2) in our problem.Then we have that 6 = (2 + x2)/2 and 8 = (3 + y2)/2.
Solving for the coordinates gives x2 = 10, y2 = 13
Answer:
x^2+8x
Step-by-step explanation:
instructions included above :)