Answer:
x=6
Step-by-step explanation:
Answer:
14 miles.
Step-by-step explanation:
Let the distance traveled from home to destination = x miles.
Speed while going to friend's house = 35 miles per hour.
Speed while coming back = 40 miles per hour.
Total Time taken for the journey = 45 minutes = 0.75 hours.
Let the time taken while going to friend's house = y hours.
Therefore, the time taken while going to friend's house = (0.75 - y) hours.
To find x and y, model the speeds of both the journeys.
Speed while going to friend's house = Distance/Time.
35 = x/y.
x = 35y (Equation 1).
Speed while coming back = Distance/Time.
40 = x/(0.75 - y).
x = 40(0.75 - y) (Equation 2).
Since x = x, therefore:
35y = 30 - 40y.
75y = 30.
y = 30/75.
y = 0.4 hours.
Put y = 0.4 hours in Equation 1:
x = 35y.
x = 35(0.4).
x = 14.
Therefore, the distance between my friend's house and my house is 14 miles!!!
Step-by-step explanation:

Given expression is

To, evaluate this limit, let we simplify numerator and denominator individually.
So, Consider Numerator

Clearly, if forms a Geometric progression with first term n and common ratio n respectively.
So, using Sum of n terms of GP, we get


Now, Consider Denominator, we have

can be rewritten as

![\rm \: = \: {n}^{n}\bigg[1 +\bigg[{\dfrac{n - 1}{n}\bigg]}^{n} + \bigg[{\dfrac{n - 2}{n}\bigg]}^{n} + - - - + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]](https://tex.z-dn.net/?f=%5Crm%20%5C%3A%20%20%3D%20%20%5C%3A%20%20%7Bn%7D%5E%7Bn%7D%5Cbigg%5B1%20%2B%5Cbigg%5B%7B%5Cdfrac%7Bn%20-%201%7D%7Bn%7D%5Cbigg%5D%7D%5E%7Bn%7D%20%2B%20%5Cbigg%5B%7B%5Cdfrac%7Bn%20-%202%7D%7Bn%7D%5Cbigg%5D%7D%5E%7Bn%7D%20%2B%20%20-%20%20-%20%20-%20%20%2B%20%5Cbigg%5B%7B%5Cdfrac%7B1%7D%7Bn%7D%5Cbigg%5D%7D%5E%7Bn%7D%20%5Cbigg%5D)
![\rm \: = \: {n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} + - - - + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]](https://tex.z-dn.net/?f=%5Crm%20%5C%3A%20%20%3D%20%20%5C%3A%20%20%7Bn%7D%5E%7Bn%7D%5Cbigg%5B1%20%2B%5Cbigg%5B1%20-%20%7B%5Cdfrac%7B1%7D%7Bn%7D%5Cbigg%5D%7D%5E%7Bn%7D%20%2B%20%5Cbigg%5B1%20-%20%7B%5Cdfrac%7B2%7D%7Bn%7D%5Cbigg%5D%7D%5E%7Bn%7D%20%2B%20%20-%20%20-%20%20-%20%20%2B%20%5Cbigg%5B%7B%5Cdfrac%7B1%7D%7Bn%7D%5Cbigg%5D%7D%5E%7Bn%7D%20%5Cbigg%5D)
Now, Consider

So, on substituting the values evaluated above, we get
![\rm \: = \: \displaystyle\lim_{n \to \infty} \frac{\dfrac{ {n}^{n} - 1}{1 - \dfrac{1}{n} }}{{n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} + - - - + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}](https://tex.z-dn.net/?f=%5Crm%20%5C%3A%20%20%3D%20%20%5C%3A%20%5Cdisplaystyle%5Clim_%7Bn%20%5Cto%20%5Cinfty%7D%20%20%5Cfrac%7B%5Cdfrac%7B%20%7Bn%7D%5E%7Bn%7D%20%20-%201%7D%7B1%20-%20%20%5Cdfrac%7B1%7D%7Bn%7D%20%7D%7D%7B%7Bn%7D%5E%7Bn%7D%5Cbigg%5B1%20%2B%5Cbigg%5B1%20-%20%7B%5Cdfrac%7B1%7D%7Bn%7D%5Cbigg%5D%7D%5E%7Bn%7D%20%2B%20%5Cbigg%5B1%20-%20%7B%5Cdfrac%7B2%7D%7Bn%7D%5Cbigg%5D%7D%5E%7Bn%7D%20%2B%20%20-%20%20-%20%20-%20%20%2B%20%5Cbigg%5B%7B%5Cdfrac%7B1%7D%7Bn%7D%5Cbigg%5D%7D%5E%7Bn%7D%20%5Cbigg%5D%7D%20)
![\rm \: = \: \displaystyle\lim_{n \to \infty} \frac{ {n}^{n} - 1}{{n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} + - - - + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}](https://tex.z-dn.net/?f=%5Crm%20%5C%3A%20%20%3D%20%20%5C%3A%20%5Cdisplaystyle%5Clim_%7Bn%20%5Cto%20%5Cinfty%7D%20%20%5Cfrac%7B%20%7Bn%7D%5E%7Bn%7D%20%20-%201%7D%7B%7Bn%7D%5E%7Bn%7D%5Cbigg%5B1%20%2B%5Cbigg%5B1%20-%20%7B%5Cdfrac%7B1%7D%7Bn%7D%5Cbigg%5D%7D%5E%7Bn%7D%20%2B%20%5Cbigg%5B1%20-%20%7B%5Cdfrac%7B2%7D%7Bn%7D%5Cbigg%5D%7D%5E%7Bn%7D%20%2B%20%20-%20%20-%20%20-%20%20%2B%20%5Cbigg%5B%7B%5Cdfrac%7B1%7D%7Bn%7D%5Cbigg%5D%7D%5E%7Bn%7D%20%5Cbigg%5D%7D%20)
![\rm \: = \: \displaystyle\lim_{n \to \infty} \frac{ {n}^{n}\bigg[1 - \dfrac{1}{ {n}^{n} } \bigg]}{{n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} + - - - + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}](https://tex.z-dn.net/?f=%5Crm%20%5C%3A%20%20%3D%20%20%5C%3A%20%5Cdisplaystyle%5Clim_%7Bn%20%5Cto%20%5Cinfty%7D%20%20%5Cfrac%7B%20%7Bn%7D%5E%7Bn%7D%5Cbigg%5B1%20-%20%5Cdfrac%7B1%7D%7B%20%7Bn%7D%5E%7Bn%7D%20%7D%20%5Cbigg%5D%7D%7B%7Bn%7D%5E%7Bn%7D%5Cbigg%5B1%20%2B%5Cbigg%5B1%20-%20%7B%5Cdfrac%7B1%7D%7Bn%7D%5Cbigg%5D%7D%5E%7Bn%7D%20%2B%20%5Cbigg%5B1%20-%20%7B%5Cdfrac%7B2%7D%7Bn%7D%5Cbigg%5D%7D%5E%7Bn%7D%20%2B%20%20-%20%20-%20%20-%20%20%2B%20%5Cbigg%5B%7B%5Cdfrac%7B1%7D%7Bn%7D%5Cbigg%5D%7D%5E%7Bn%7D%20%5Cbigg%5D%7D%20)
![\rm \: = \: \displaystyle\lim_{n \to \infty} \frac{\bigg[1 - \dfrac{1}{ {n}^{n} } \bigg]}{\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} + - - - + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}](https://tex.z-dn.net/?f=%5Crm%20%5C%3A%20%20%3D%20%20%5C%3A%20%5Cdisplaystyle%5Clim_%7Bn%20%5Cto%20%5Cinfty%7D%20%20%5Cfrac%7B%5Cbigg%5B1%20-%20%5Cdfrac%7B1%7D%7B%20%7Bn%7D%5E%7Bn%7D%20%7D%20%5Cbigg%5D%7D%7B%5Cbigg%5B1%20%2B%5Cbigg%5B1%20-%20%7B%5Cdfrac%7B1%7D%7Bn%7D%5Cbigg%5D%7D%5E%7Bn%7D%20%2B%20%5Cbigg%5B1%20-%20%7B%5Cdfrac%7B2%7D%7Bn%7D%5Cbigg%5D%7D%5E%7Bn%7D%20%2B%20%20-%20%20-%20%20-%20%20%2B%20%5Cbigg%5B%7B%5Cdfrac%7B1%7D%7Bn%7D%5Cbigg%5D%7D%5E%7Bn%7D%20%5Cbigg%5D%7D%20)
![\rm \: = \: \displaystyle\lim_{n \to \infty} \frac{1}{\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} + - - - + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}](https://tex.z-dn.net/?f=%5Crm%20%5C%3A%20%20%3D%20%20%5C%3A%20%5Cdisplaystyle%5Clim_%7Bn%20%5Cto%20%5Cinfty%7D%20%20%5Cfrac%7B1%7D%7B%5Cbigg%5B1%20%2B%5Cbigg%5B1%20-%20%7B%5Cdfrac%7B1%7D%7Bn%7D%5Cbigg%5D%7D%5E%7Bn%7D%20%2B%20%5Cbigg%5B1%20-%20%7B%5Cdfrac%7B2%7D%7Bn%7D%5Cbigg%5D%7D%5E%7Bn%7D%20%2B%20%20-%20%20-%20%20-%20%20%2B%20%5Cbigg%5B%7B%5Cdfrac%7B1%7D%7Bn%7D%5Cbigg%5D%7D%5E%7Bn%7D%20%5Cbigg%5D%7D%20)
Now, we know that,
![\red{\rm :\longmapsto\:\boxed{\tt{ \displaystyle\lim_{x \to \infty} \bigg[1 + \dfrac{k}{x} \bigg]^{x} = {e}^{k}}}}](https://tex.z-dn.net/?f=%5Cred%7B%5Crm%20%3A%5Clongmapsto%5C%3A%5Cboxed%7B%5Ctt%7B%20%5Cdisplaystyle%5Clim_%7Bx%20%5Cto%20%5Cinfty%7D%20%5Cbigg%5B1%20%2B%20%5Cdfrac%7Bk%7D%7Bx%7D%20%5Cbigg%5D%5E%7Bx%7D%20%20%3D%20%20%7Be%7D%5E%7Bk%7D%7D%7D%7D%20)
So, using this, we get

Now, in denominator, its an infinite GP series with common ratio 1/e ( < 1 ) and first term 1, so using sum to infinite GP series, we have





Hence,

Answer:
92
Step-by-step explanation:
If w=8 then you would multiply 9 by 8 which is 72. Then you would multiply 5 with 4 since x equals 4 which is 20. Then you would add 72+20 which gives you your answer which is 92
Answer:
The slope is 0
Step-by-step explanation:
Given


Required
The slope (m)
This is calculated as"



<em>The slope is 0</em>