Ages of Dan and Cary are 29 and 33 respectively.
<u>Step-by-step explanation:</u>
Step 1:
Form equations out of the given details. Let the age of Dan be x, then age of Cary is x + 4.
In 7 years, sum of their ages = 76
⇒ (x + 7) + (x + 4 + 7) = 76
⇒ 2x + 18 = 76
⇒ 2x = 58
⇒ x = 29
Step 2:
Calculate age of Cary.
⇒ x + 4 = 33
Answer:
Step-by-step explanation:
-x - 6 > 21 - 28x
27x - 6 > 21
27x > 27
x > 1
Answer:
-32-p
Step-by-step explanation:
you combine the like terms which would be -21 and -11. that gives you -32 and -p is just by its self since there are no terms to combine it with
If <em>x</em>² + <em>y</em>² = 1, then <em>y</em> = ±√(1 - <em>x</em>²).
Let <em>f(x)</em> = |<em>x</em>| + |±√(1 - <em>x</em>²)| = |<em>x</em>| + √(1 - <em>x</em>²).
If <em>x</em> < 0, we have |<em>x</em>| = -<em>x</em> ; otherwise, if <em>x</em> ≥ 0, then |<em>x</em>| = <em>x</em>.
• Case 1: suppose <em>x</em> < 0. Then
<em>f(x)</em> = -<em>x</em> + √(1 - <em>x</em>²)
<em>f'(x)</em> = -1 - <em>x</em>/√(1 - <em>x</em>²) = 0 → <em>x</em> = -1/√2 → <em>y</em> = ±1/√2
• Case 2: suppose <em>x</em> ≥ 0. Then
<em>f(x)</em> = <em>x</em> + √(1 - <em>x</em>²)
<em>f'(x)</em> = 1 - <em>x</em>/√(1 - <em>x</em>²) = 0 → <em>x</em> = 1/√2 → <em>y</em> = ±1/√2
In either case, |<em>x</em>| = |<em>y</em>| = 1/√2, so the maximum value of their sum is 2/√2 = √2.