The previous answer from another person got deleted, so I'm here to put it back in my own words.
(Edit: The answer is A)
First of all, you can take 4 out of each, so simplify everything by 4.
4(x^4 - 6x^3 + 9x^2)
Next, you can see that you're able to take out x^2
4x^2(x^2 - 6x + 9)
You can see that both x^2 and 9 are perfect squares, meaning you can crunch them together like this
(x+3)^2 or (x-3)^2
Of course, only one would work, and as fate has it, (x-3)^ produces x^2 - 6x + 9
This would turn the now factored equation into :
4x^2(x-3)^2 or 4x^2(x-3)(x-3), this means the answer is A
The easiest way is to make equations y=2400x+30000 and y=2000+36000
and then put that in the calculator and go to table and the point they intersect at is (15,66000)
Answer:
The factorization of
is 
Step-by-step explanation:
This is a case of factorization by <em>sum and difference of cubes</em>, this type of factorization applies only in binomials of the form
or
. It is easy to recognize because the coefficients of the terms are <u><em>perfect cube numbers</em></u> (which means numbers that have exact cubic root, such as 1, 8, 27, 64, 125, 216, 343, 512, 729, 1000, etc.) and the exponents of the letters a and b are multiples of three (such as 3, 6, 9, 12, 15, 18, etc.).
Let's solve the factorization of
by using the <em>sum and difference of cubes </em>factorization.
1.) We calculate the cubic root of each term in the equation
, and the exponent of the letter x is divided by 3.
![\sqrt[3]{729x^{15}} =9x^{5}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B729x%5E%7B15%7D%7D%20%3D9x%5E%7B5%7D)
then ![\sqrt[3]{10^{3}} =10](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B10%5E%7B3%7D%7D%20%3D10)
So, we got that
which has the form of
which means is a <em>sum of cubes.</em>
<em>Sum of cubes</em>

with
y 
2.) Solving the sum of cubes.


.
Answer:
3
Step-by-step explanation:
Standard form is written in the order of the exponent <em>on</em><em> </em><em>a</em><em> </em><em>variable</em> from highest to lowest.
#1 exponents go 2, 1 , then zero. So, this is standard form.
#2 exponents go 2 then zero, so this is standard form.
#3 exponents go 1 then 2 then zero, so this is <em><u>not</u></em> in standard form.
#4 exponents go 3 to 2 to 1, so this is still in standard form.
hope this helps!
Answer:
The answer is-3/4
Step-by-step explanation:
#Hope it helps uh.....