Answer:
600 minutes
Step-by-step explanation:
If we write both situations as an equation, we get:
y1 = 24 + 0.15x
<em>y1 </em><em>:</em><em> </em><em>total </em><em>cost </em><em>paid </em><em>in </em><em>first </em><em>plan</em>
<em>x </em><em>:</em><em> </em><em>total minutes </em><em>of </em><em>calls</em>
y2 = 0.19x
<em>y2 </em><em>:</em><em> </em><em>total </em><em>cost </em><em>in </em><em>second </em><em>plan</em>
<em>x:</em><em> </em><em>total </em><em>min</em><em>utes </em><em>of </em><em>call</em>
We are now looking for the situation where the total cost in the two plans is equal, so
y1 = y2
this gives
24 + 0.15x = 0.19x
<=> 0.04x = 24
<=> x = 600
Answer:
y=-3/11x+67/11
Step-by-step explanation:
y-8=-5-8/4--7(x--7)
y-8=-3/11(x+7)
11y-88=-3x-21
11y=-3x-21+88
11y=-3x+67
y=-3/11x+67/11
50 because 80+50+x=180 (inside triangle) x=130 180-130= 50 (angle outside triangle)
260 divided by 90 is 2.8 and you would probably want to round that up so 3 quarts