The value of the population of the growth of an endangered birth after 5 years is 1975
<h3>How to determine the population after 5 years?</h3>
The population function is given as:
B(t) = 100 + 3/5t^5
At 5 years, the value of t is 5
So, we have
t = 5
Next, we substitute 5 for t in the equation B(t) = 100 + 3/5t^5
This gives
B(5) = 100 + 3/5 * 5^5
Evaluate the exponent
B(5) = 100 + 3/5 * 3125
Evaluate the product
B(5) = 100 + 1875
Evaluate the sum
B(5) = 1975
Hence, the value of the population of the growth of an endangered birth after 5 years is 1975
Read more about exponential functions at:
brainly.com/question/2456547
#SPJ1
Answer:
a) 33.33%)
b) 135 minutes
c) 8.66 min
d) 50%
Step-by-step explanation:
a) the probability for a uniform distribution is
P(b<X<a) = (a-b)/(c-d) , where c and d are the maximum and minimum values
therefore the probability that the flight is more than 140 minutes ( and less than 150 since it is the maximum value)
P(140<X<150) = (a-b)/(c-d) = (150-140)/(150-120) = 10/30 = 1/3 (33.33%)
b) the mean (expected value) for a uniform probability distribution is
E(X) = (c+d)/2 = (120+150)/2 = 135 minutes
c) the standard deviation for a uniform probability distribution is
σ²(X)= (c-d)²/12 = (150-120)²/12 = 75 min²
σ = √75 min² = 8.66 min
b) following the same procedure as in a)
P(120<X<135) = (a-b)/(c-d) = (135-120)/(150-120) = 15/30 = 1/2 (50%)
No we can’t see the question
Jfjfjdjfjfjfhfhfhfhdhdbdhdbdhdhdh
A^2+b^2= c^2
3^2+4^2=c^2
9+16=c^2
25=c^2
5=c
Answer: 4x² + 5x + 3
<u>Step-by-step explanation:</u>
