-45368
-214*212
This is as simplified as it can be.
Below are suppose the be the questions:
a. factor the equation
<span>b. graph the parabola </span>
<span>c. identify the vertex minimum or maximum of the parabola </span>
<span>d. solve the equation using the quadratic formula
</span>
below are the answers:
Vertex form is most helpful for all of these tasks.
<span>Let </span>
<span>.. f(x) = a(x -h) +k ... the function written in vertex form. </span>
<span>a) Factor: </span>
<span>.. (x -h +√(-k/a)) * (x -h -√(-k/a)) </span>
<span>b) Graph: </span>
<span>.. It is a graph of y=x^2 with the vertex translated to (h, k) and vertically stretched by a factor of "a". </span>
<span>c) Vertex and Extreme: </span>
<span>.. The vertex is (h, k). It is a maximum if "a" is negative; a minimum otherwise. </span>
<span>d) Solutions: </span>
<span>.. The quadratic formula is based on the notion of completing the square. In vertex form, the square is already completed, so the roots are </span>
<span>.. x = h ± √(-k/a)</span>
Answer:
(2, 1) (1, 5) and (4, 3)
Step-by-step explanation:
Basically switch the x and y axes, and depending on the quadrant, switch the negative and positive signs to their appropriate ones.
hope this helps!
please heart and five-star it if u have the chance! :D
Answer:
Part 1) 
Part 2) 
Step-by-step explanation:
The picture of the question in the attached figure
Part 1
Find the length side AB
we know that
----> by SOH (opposite side divided by the hypotenuse)
substitute the given values

solve for AB

Part 2
Find the length side AC
we know that
----> by TOA (opposite side divided by the adjacent side)
substitute the given values

solve for AC
